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Abstract. We extend a standard model of parental investment and
intergenerational mobility to include a fully specified genetic analysis
of skill transmission. The model’s predictions differ substantially from
standard models. The coefficient of intergenerational income elasticity
(IGE) may be larger than in the standard model, and depends on distri-
bution of the genotype. The distribution of genetic endowments may be
stratified according to income. The model is tested on data, including
genetic information, of twins and their parents, estimating how IGE is
affected by genetic factors, and how environment and genes interact.
The effect of intelligence is substantially stronger than other traits.
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1. Introduction

In recent research of heritability of phenotypes based on genome-wide
association studies (GWAS) a number of markers have been identified. A
GWAS is a study of common genetic variants spanning the entire genome
(typically one million Single Nucleotide Polymorphisms (SNP ’s) or more)
in a typically large set of individuals to determine if and how much any
variant is associated with a trait. The markers that achieve significance at
the conventional GWAS threshold 1 are still limited in number, and together
explain a limited fraction of the variability of the phenotype. In spite of this,
a considerable fraction of phenotypic variation can be explained by a larger
set of genetic markers that includes variants which are not significant by
GWAS standards.

A way to take into account the information available in markers, includ-
ing perhaps those with significance lower than the GWAS threshold, is to
compute a Polygenic Score (PGS). A PGS is an individual-specific score,
obtained as sum of the value of the markers in a selected set, each value
weighted by a coefficient that has been estimated separately on an indepen-
dent training sample (Dudbridge (2013)). Our analysis here is based on the
large GWAS of educational attainment reported by Lee et al. (2018) (see
also Rietveld et al. (2013), Okbay et al. (2016)). An illuminating discussion
of the analysis of educational attainment in the modern GWAS era is in
Cesarini and Visscher (2017).

Theoretical Framework. We set up the investigation in a fully specified
model of parental investment in education of children. Some classical pa-
pers establishing this tradition are Becker and Tomes (1979), Loury (1981),
Becker and Tomes (1986). Important developments of the early model
are, among many, in Solon (1992), Mulligan (1997), Mulligan (1999), Solon
(2004), Black and Devereux (2011), Black et al. (2017)). Our model differs
from the existing ones in the field in two respects, both introduced because
we need to take into account the information on genotype and its transmis-
sion. First, we introduce explicitly the fact that children are the outcome
of a joint process involving a father and a mother; so we need to include
in the the model a theory of mating 2 (similarly to Aiyagari et al. (2000),
Greenwood et al. (2003)). The importance of assortative mating has been
well documented in the past. For instance Greenwood et al. (2016) docu-
ment that assortative mating along educational characteristics has increased
in the USA. We build here on research like Fernandez and Rogerson (2001),

1The threshold is 5 × 10−8; the factor 10−8 corrects (Bonferroni) for multiple
comparisons.

2In this paper two terms, matching and mating are used interchangeably, as synony-
mous for partnership among parents. The reason for the coexistence of the two terms is
that the “matching” is used more frequently in the economics literature, and “mating” in
behavioral genetics. In each instance we use the term most appropriate in the context.
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Fernandez et al. (2005) which studies models where assortative mating di-
rectly affects intergenerational mobility. Second, we model the process of
skill formation consistently with the transmission of genotype from parents
to children, along well known lines in genetics (see for example Nagylaki
(1992)). From our vantage point, after so much research, we can revisit the
classical debate between Goldberger (1989) and Becker (1989), and realize
that both models were, in some important measure, imprecise. We take this
opportunity to illustrate the implications of our work. 3 Becker had in mind
the auto-regressive process assumed in his earlier work (Becker and Tomes
(1979), Becker and Tomes (1986)), that we discuss more in detail later (sec-
tion 3.3). In his thought provoking 1985 Woytinsky lecture, Goldberger
suggests a modification of Galton (1886) Regression Towards Mediocrity, 4

presenting the Galton’s argument that the characteristic of the individual is
some weighted average of the characteristics of the entire history of ances-
tors. But the expectation of the child’s phenotype conditional on the entire
history of genotypes of the ancestors is equal to the expectation conditional
on the parents’ genotype only. It also has a precise form, 5 which is neither
the one in Becker and Tomes (1979) nor the one in Goldberger (1989).

Empirical Questions. Within our theoretical framework we address two ba-
sic sets of questions. First, how much of the variance in income and educa-
tional achievement is explained by the PGS, and how does family structure
affect the transmission? Similar questions have been investigated using the
same data in McGue et al. (2017) and McGue et al. (2020), but simply ex-
amining correlational results, rather than tests of a well specified model of
parental investment.

Tests of the effectiveness of the polygenic score in predicting a variety
of variables are presented in existing literature: for educational attainment,
see Rietveld et al. (2013), Okbay et al. (2016), Lee et al. (2018), Kong et al.
(2018), Willoughby et al. (2021), for wealth see Barth et al. (2020), for so-
cial mobility of children compared to parents, see (Belsky et al. (2018)), for
health outcomes, see Barcellos et al. (2018). Earlier contributions on the
issue of health conditions and academic performance using genetic markers
is in Ding et al. (2009), Fletcher and Lehrer (2011)). This estimate would
give us a lower bound on how much of the variance of success in education
can be attributed to the individual’s genotype. How is this effect modified
by assortative mating among parents, and the correlation among their geno-
types? And finally, how is the effect of genes mediated by the direct effect

3The discussion between Goldberger and Becker centered on two main points: whether
adopting a utility maximization framework makes a difference for the predictions of the
theory, and what is the stochastic process of skill. For the first, we adopt here the utility
maximization setup, but, as long as the comparison of policies is not explicitly modeled,
choosing one of the other makes little difference. We focus here on the second point.

4Page 505 in Goldberger (1989).
5See e.g., equation 10.104 in Nagylaki (1992)
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on the genotype of the children, and how much mediated by the indirect
effect on the environment provided to them, as well as parental investment?

Second, what are the channels through which the effect of genotype, as
summarized by the PGS, operates in each individual? Recall that the score
is built on a simple statistical association between genotype and the phe-
notype of interest, in our case success in education, and no mechanism un-
derlying the association is identified. A natural first channel to consider is
intelligence: the score likely summarizes a set of highly polygenic effects on
intelligence, and in turn intelligence improves the chances of success in edu-
cation. But intelligence is not the only plausible channel; personality traits
are an important additional way. We use the term personality to indicate a
set of individual characteristics possessed by a person that together deter-
mine a consistent pattern of cognition, emotions, motivations, and behaviors
in various situations. A substantial fraction of success in education might
be traced back to motivation, self-control, ambition; in general, personality
traits distinct from pure cognitive skills. A gene affecting these traits would
also appear as contribution to the PGS score, even if unrelated to intelli-
gence. These are all natural channels. The effect of genes on education
could operate, however, along completely different pathways, involving indi-
vidual characteristics that have no bearing on the technology of educational
attainment, for example discrimination. Clearly, understanding which of
these pathways operates, and in what measure, is essential, particularly for
policy guidance. We now review our answers to these questions.

Outline of Main Results. We develop (section 2) a model of intergenerational
mobility, building on classical parental investment models, but replacing
their ad-hoc skill transmission equation with a precise and correct model
of genetic inheritance from the two parents. In the model the coefficient
of persistence of skills is endogenous, depending on the distribution of the
genotypes in the populations; thus most of the conclusions of the classical
model are now invalid. We provide the correct predictions.

An important component of the theory is the model of assortative match-
ing among parents according to characteristics, some endowed with a natural
order (such as income and skills), and some not (such as personality traits,
or physical appearance); we show how this affects the distribution of the
genotypes at the invariant distribution of the system. A state of the system
is described by a joint probability on genotypes and endogenous variables,
such as income and education. Because of with assortative matching, the
transition function is non linear, so existence of a stationary distribution is
not simple. We prove its existence and some basic properties.

At the stationary distribution, within each class of matching, alleles are
in Hardy-Weinberg equilibrium. 6 More notably, the frequency of alleles
with positive effect on educational attainment, and thus on income, posi-
tively correlates with income. The correlation is stronger, the stronger the

6The definition of Hardy-Weinberg is recalled later, see section 3.
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effect of the allele. These results identify a powerful force producing lasting
inequality. which has been ignored so far, and is absent by assumption in
standard models. 7

The model leads to a natural empirical test, using data described in sec-
tion 9. Information on genotype of individuals is summarized into a poly-
genic score obtained from a large GWAS on educational attainment. All
the predictions of the model are tested in a unique set of data in which
we have complete genetic information on parents and children, in addition
to information on education, personality traits, intelligence, family environ-
ment and income. We estimate (section 5) the intergenerational elasticity
coefficient of income, which is in the lower end of existing estimates for the
overall USA. We compare it to the effect size of genetic factors measured
by the polygenic score; we find that the latter is approximately half of that
of income. In section 6 we identify the pathways of the effect on income
through human capital formation.

In section 7 use the twin structure of our data to check for the robust-
ness of the results and investigate passive gene × environment correlation,
that is, how the genetic endowment of the parents affects the phenotype of
the children through the family environment. Natural and significant chan-
nels of this effect are education of parents and their income, and we prove
this channel is significant. However, there is no additional residual channel
through family environment in addition to these two. When we study the
pathways of the genetic effect measured by the PGS, we find that after
correcting for measurement errors, the effect from genotype to educational
and economic success is mostly mediated by intelligence, and only weakly
by non-cognitive skills. Conclusions are presented in section 8.

2. Genetic Skill Transmission and Parental Investment

We begin with the conceptual and theoretical structure for our empirical
analysis, introducing a model and an equilibrium concept. The complete
model to be tested is presented in section 2.7. Our first aim is to show
that the standard analysis of parental investment in education, and inter-
generational mobility (as pioneered in Becker and Tomes (1979), where the
skill transmission follows a simple AR(1) process), should be modified –if
one wants to avoid significant misunderstandings–to take into a account a
fully specified genetic mechanism of skill transmission. A core feature of
the model we propose is the combination of the theory of marriage (Becker
(1973)) to predict mating, with a model of genetic transmission. A com-
parison of the prediction of the two models is provided in section 3.3; there
we show that they differ substantially on key predictions, for instance on
inter-generational mobility.

7We use standard model in a broad sense here, which includes Goldberger (1989)’s
model.
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Our model has several components. After defining the basic environment
(section 2.1), in section 2.2 we describe how the skill of the children are
affected by genetic endowment inherited by parents, family environment and
random events. Then, in section 2.4, we describe the decision of parents to
invest into education of the children.

2.1. Setup. A population of individuals, constant in number over time, is
organized into households. A household maximizes a utility function of own
consumption and future income of two children, which in turn is affected
by genetic endowment of the children, parental investment in education,
and environment. The restriction to two children is consistent with the as-
sumption that population size is constant. In our data, the two children
also happen to be twins: this detail has little importance when we study
parental investment, 8 but becomes important when we study the correla-
tion of skill and income across siblings. We denote y the natural log of the
income (so this value ranges in the real line), E consumption expenditure, I
parental investment in education of children and h human capital measured
by the education level. εe and εy denote the random shocks to education
and income respectively: each one is i.i.d. across periods and the two are in-
dependent within periods. Subscripted α’s denote productivity parameters
of the variable in the index; so αI , αh denote positive real numbers associ-
ated to parental investment and human capital. δ ∈ (0, 1) is the discount
factor. A vector of real numbers θ = (θ1, . . . , θn1 , θn1+1, . . . , θn) describes
the n skills, where index from 1 to n1 refers to hard or cognitive skills, and
those from n1 + 1 to n to soft or non-cognitive skills (Heckman and Kautz
(2012), Heckman et al. (2013)). Skills enter linearly into the production of
the education level though an n-dimensional vector of coefficients αθ. The
superscript i refers to the family, the subscript j = 1, 2 to the siblings; so
a sibling is uniquely identified by the pair ij. Household log-income yi is
some combination of the log-income of father yif and mother, yim. 9 The
precise form of the combination will be specified later. We denote E the
expectation of a random variable.

We emphasize that the model is not a two-period models, but an overlap-
ping generations model, so each individual appears in the model as a child
and then as a parent, and the model describes behavior in both stages of life.
So when we model, for instance, how genetic factors affect skill formation,
human capital accumulation and income of children, we also model how
the same variables have been determined for the parents of these children.
We make full use of this in some crucial step; for example in section A.5,
where we describe how genetic factors affect behavior both as children and
as parents.

8Note however that two children who are also twins have the same age, so the parental
investment in this case does not concern two individuals of different age, as instead typical
for siblings.

9The use of letters f and m avoids confusion with the family index.
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2.2. Skill Transmission. We replace the standard AR(1) mechanism of
skill transmission (discussed more extensively in section 3.3 below) with a
detailed model where the skill vector θ results from genetic factors, parental
investment in education, family environment common to all children, and
idiosyncratic random events for each individual.

We examine these components separately, beginning with the genetic com-
ponent. 10 If K is the number of loci, a genotype is a g ∈ G ≡ {0, 1, 2}K ,
so g = (g(k) : k = 1, . . . ,K). Here 0, 1, 2 refers to the count of one of the
alleles in a bi-allelic system (a GWAS typically deals with variants, SNP ’s,
that are bi-allelic in the analysis). The joint distribution of genotypes of
the two children, given the genotype of the two parents, depends on the
twin type, that may be monozygotic, MZ or dizygotic, DZ. To describe
how the distribution is determined we start with the function from parents’
genotype to the probability over genotypes of an individual offspring, given
by a function H from G×G to ∆(G):

(1) H : (gm, gf ) 7→ H(gm, gf ).

We will write H(·|gm, gf ) when we want to indicate explicitly the set on
which this measure operates. The function H follows well known rules
of Mendelian inheritance (see for example Nagylaki (1992), or Crow and
Kimura (1970)); for instance if K = 1, so that G = {0, 1, 2}, then H(·|1, 1)
is (0.25, 0.5, 0.25), and so H(2|1, 1) = 0.25. Similarly, H(·|0, 2) is (0, 1, 0).

The map in equation (1) is well defined only under the assumption, which
we make, that the distribution across loci is independent. Simple examples
show that we may have two different haplotype pairs which induce the same
genotype profile (gm, gf ) for the parents but, without this assumption, in-
duce different elements in ∆(G) for the children.

2.3. Polygenic Scores. Let w denote a n-valued function determining
skills as function of the genotype g. The polygenic scores are denoted by
w(g). They are computed assuming additivity across loci and within each
locus, so that:

(2) w(g) =

K∑
k=1

α(k)g(k)

10In the context of the twins-studies model, the integration of parental investment
models with a more realistic model of skill transmission has been explored in Rustichini
et al. (2017), where the realistic model of genetic transmission is used to provide a justi-
fication for the standard ACE models in twin studies in the context of economic analysis
of parental investment. However, in in Rustichini et al. (2017) there is no analysis of the
invariant measure produced by assortative mating according to characteristics (which we
consider one of the main contributions of this paper), nor a comparison of the predictions
of the standard skill transmission model in the tradition of Becker and Tomes (1979).
Finally, the empirical analysis does not make any use of the genetic information used in
this paper.
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where α is a vector of parameters. The values w are latent variables, and
they would be of little use if we did not have an estimate. We will rely
on estimates, called estimated polygenic score of the true effect w(g) of the
genotype g, is:

(3) PGS(g) =

K∑
k=1

β(k)g(k)

where β’s are weights derived from a genome-wide association study (GWAS).
We should note that the weights obtained in a GWAS do not give full ac-
count of the variability in educational attainment. There may be rare vari-
ants (Yengo et al. (2020)) as well as structural variants (Chiang et al. (2017))
that are not well captured by a GWAS study. 11 We let Xi

j denote vector
of variables associated to twin ij . These variables may be observable or
not, and may include for instance the parents’ education, personality traits
of the child, family’s social status, and so on. Also let Π a matrix with n
rows, F a family specific n-dimensional vector (common to both twins in
family i, either MZ or DZ), and εθ an individual specific n-dimensional en-
vironmental zero-mean shock on the skill. We specifically denote the effect
of family income, which is assumed to be linear with coefficient π.

The skill of twin ij is thus given by 12 :

(4) θij = w(gij) + πyi + ΠXi
j + F i + εθ,ij .

We assume the no-correlation:

(5) ∀i, j, ∀k ∈ {h, y} : Eεk,ij εθ,ij = 0,

and zero-mean conditions:

∀i, j : EF i = 0,E(εθ,ij ) = 0.

2.4. Parental Investment. The ith household solves in the variables E
expenditure in consumption and Ii pair of investment in the two children:

(6) max
(Ei,Ii1,I

i
2)

E(θi1,θ
i
2)

(1− δ) lnEi + δ
∑
j=1,2

yij

 ,

11We ignore the possible measurement error of PGS here, since we are not primarily
interested in heritability per se. A possibe extension of our research would reduce this
attenuation using for example methods described in Becker et al. (2021).

12 The effect of family income on skill in equation (4) is taken here as given. One can
easily set up a more complex model on which parents also decide an investment in skill
formation, in addition to human capital accumulation as described in the next section 2.4.
This more complex model, is described in section S-0.1 of the Appendix. where we show
that it yields a skill equation just like (4), and where the income term is produced by a
household optimization problem, just as it is in equation (8).
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subject to the budget constraint given by the household’s income (recall y
is the natural log of income):

(7) Ei +
∑
j=1,2

Iij = exp(yi)

The choice on consumption and educational investment is taken with the
knowledge of the skills (θi1, θ

i
2) of the children, hence the sub-script in the

expectation of equation (6), which refers to the random shocks εh and εy.
Human capital accumulation is described by:

(8) hij = αI ln Iij + αθθ
i
j + εh,ij , j = 1, 2

and income is given by:

(9) yij = αhh
i
j + εy,ij , j = 1, 2.13

We assume zero mean for shocks to human capital and income:

(10) ∀i, j, ∀k ∈ {h, y} : Eεk,ij = 0;

and assume that the shocks to human capital and income are not correlated:

∀i, j : E(εh,ij εy,ij ) = 0;

At the optimal solution of the problem in equations (6-10), optimal parental

investment is equal for the two siblings (Îi1 = Îi2 ≡ Îi), and is a constant
fraction of household income:

(11) Îi =
δαIh

1− δ + 2δαIh
exp(yi) ≡ ψ exp(yi).

where αIh ≡ αIαh. Equal investment in education for the two children is of
course a very special feature due to the preferences we have adopted.

2.5. Income of the Children. In the analysis below we also use this more
general model to control for education of parents, college degree of parents,
work status of the father. Substituting the optimal investment reported
in equation (11) into the human capital equation (8) and substituting the
result into equation for income (9) we get the reduced equation for income:

(12) yij = a+ αIhy
i + αθhθ

i
j + αhε

h,i
j + εy,ij

where a = αIh lnψ, and αθh = αθαh.
To complete the model, we need to specify how the pairs of parents are

selected. To this we turn now.

13In both equations (8) and (9), we could add on the right hand side a term w(g),
multiplied by some additional parameter, to allow direct influence of genetic component
on the variable. However, since this term already appears in the right hand side of equation
(4), this genetic component will, even in the simple version presented in equations (8) and
(9), be considered in empirical estimates, and this addition would make the model more
complex with no substantial gain.)
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2.6. Matching Processes. To complete the system described by equations
(4), (8), (12), (18) and (19), we need to specify the matching process for par-
ents. We assume that this process depends on the individual characteristics
that we have described so far, namely skill and income, which are relevant
for economic outcomes, but also on characteristics in a set C that are im-
portant for matching but not for economic activity (such as the personality
traits, different from cognitive or non-cognitive skills, that are recorded in
our data). Recall Y is the set of log-incomes, let Z ≡ G× Y ×Θ× C, and
the observable characteristics ZO ≡ Y ×Θ×C with generic element zO; for
convenience we indicate with a subscript (as in ∆m(Z)) whether the element
in ∆(Z) refers to the mother or the father.

A matching associates to a pair of distributions (µm, µf ) ∈ ∆m(Z) ×
∆f (Z) an element denoted M(µm, µf ) ≡ ν ∈ ∆ (Z × Z), describing the
distribution of pairs of genotypes, skills, income and characteristics of the
two parents. The matching process is required to be:

(1) Feasible: the marginal of each type of parent distribution is the
same as the original distribution for that type:

M(µm, µf )∆i(Z) = µi, i ∈ {m, f}

(2) Conditional independence of genotype: the random variables
gm and gf (genotype of mother and father) are independent, condi-
tionally on the information of observable characteristics.

The conditional independence assumption requires that matching only de-
pends on the observable characteristics zO ∈ Y × Θ × C; in other words,
matches are made on the basis of observable characteristic and not on the
genotype. Thus, matching of genotypes is not random within the popula-
tion, but it is random within the set of individuals with given observable
characteristics. The assumption is very weak, at least as long as individuals
choose their partners without taking into account the results of genetic tests,
which is typically not yet the case.

Random Matching within the entire population is a special example of
matching: in this case, a mother of type zmO is selected, and independently
a zfO for the father, according to µm and µf respectively. This model is
convenient for its simplicity, but it is not entirely supported by the data,
which show instead substantial positive correlation between several charac-
teristics of the parents. Thus a model induced by preferences over matchings
is desirable, and will provide a better approximation. A detailed analysis of
the equilibrium concept is presented in section A.1.

2.7. Matching According to Worth. The analysis of the invariant dis-
tribution is simpler if matching is only dependent on income and skill of the
spouse. So we set:

(13) Π = 0, F i = 0, εθ = 0, εh = 0, εy ∼ N(0, σ2
εy).
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We call worth class the set of individuals with the same worth. In this
model, in each generation children are born of spouses of same worth (not
necessarily income: higher skill may compensate a lower income).

A pair of genotype and income (g, y) has a worth w(g) + wyy. Mating
is random within each worth class. To define these classes, we consider
partitions of the set. A possible partition is the discrete partition, in which
mating occurs only within pairs of exactly the same worth; we will use this
partition as a simple but not very realistic example. A more realistic model
has a countable partition. To define it, we take a countable set of values,
indexed by the integers:

(14) V ≡ {vi : i ∈ Z}.
We assume that these values are increasing in the index, and that the dis-
tance between successive terms is uniformly bounded above and below:

(15) ∃M,M, ∀i : 0 < M ≤ vi+1 − vi ≤M.

The class of genotype and income pairs of worth vi is defined as

(16) C(vi) ≡ {(g, y) : w(g) + wyy ∈ [vi, vi+1)}.
The worth function W : G× Y → V is defined as:

(17) W (g, y) ≡ vi if (g, y) ∈ C(vi).

We consider a probability measure µ ∈ ∆(G×Y,B(G×Y )), where B are the
Borel subsets, as the description of the current distribution in the population
of pairs of genotype and income. G is finite, so the Borel σ-field is the power
set; using the Borel definition and notation for both G and Y simplifies the
exposition.

As we mentioned, children in our sample are all twins. The genetic trans-
mission function in equation (1) is obviously true in particular for each
individual twin. In addition to that equation we have two additional condi-
tions restricting the joint transmission to the pair of twin. These conditions
depend on the twin type, an element on the set {DZ,MZ}, and are defined
as:

(18) HDZ(gm, gf )(g1, g2) = H(gm, gf )(g1)H(gm, gf )(g2)

for the genotype pair (g1, g2) of the DZ twins and

(19)
HMZ(gm, gf )(g1, g2) = H(gm, gf )(g1) if g1 = g2

= 0 otherwise

for MZ twins.
For the given µ, we describe the next period measure as follows. Each

worth class is chosen with the probability induced by µ on the worth space,
denoted by µV . Two parents (that is, two pairs of genotype and income) are
chosen according to the probability on that class of genotypes and income.
Within the class, mating is random. The genotype of parents then deter-
mines genotype of the child, and parents’ income and education, together
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with child’s genotype, determine income. This entire process yields the new
measure. 14 The complete model of the process on genotype, income, educa-
tion and skill is given by equations (4) for skill, (8) for education, the reduced
equation (12) for income, and (18) and (19) for the genotype transmission,
Together with the mating process presented in section 2.6, these equations
completely determine a non-linear (because of the function H in equation
(1)) transition on measures on the space of genotypes and income, ∆(G×Y ).
An invariant distribution is a fixed point of this transition function.

If an invariant distribution exists, we can then subtract from the variables
(yij , θ

i
j , h

i
j , w(gij)) their expected value with respect to the invariant distribu-

tion; so the constants are eliminated (for example the a term in the reduced
equation for income is eliminated). Since no confusion is possible, we keep
the same names for these variables which have now zero mean. We write
the equations (18) and (19) in the compact form:

(20) gij is distributed as Hk(g
i
m, g

i
f ), k ∈ {MZ,DZ}.

If we substitute equation (4) into the reduced equation for income (12)
we get the twin’s income yij as a linear function of genetic endowment gij ,

family income yi and environment F i, and a weighted sum of idiosyncratic
(j dependent) variables:

(21)
yij = αθhw(gij) + (αIh + αθhπ)yi + αθhF

i+

αθhΠXi
j + αθhε

θ,i
j + αhε

h,i
j + εy,ij .

The decomposition in equation (21) is a more detailed version of the stan-
dard ACE decomposition in behavioral genetics (see for example Knopik
et al. (2017), page 358), where the phenotype is income, the A term is the
additive contribution of genotype, αθhw(gij), the common or shared environ-

ment component C is the sum of the two terms (αIh + αθhπ)yi and αθhF
i,

and sum of the last four terms is the E component.
We assume:

(22) αIh + αθhπ < 1, αθh > 0,

to ensure that (the first inequality) the income process is bounded, and an
invariant measure exists, and (the second inequality) that skill has a non
trivial effect on income. The equation describing human capital accumu-
lation is similar, up to the constant multiplier αh; we report it here for
convenience because we will cite it in the empirical analysis:

(23) hij = αθw(gij) + (αI + αθπ)yi + αθΠX
i
j + αθF

i + αθε
θ,i
j + εh,ij .

and is obtained substituting (11) into (8) and subtracting the constant term.

14For a precise definition of the transition from one period’s measure to the next,
we refer to section A.4; here the income of the child is described by equation (55), and
genotype of the child by equation (57).
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Different further specifications of the model are possible, depending on
how we model the variables Xi

j and F i in equation (23) and therefore in

equation (21). We explore these possibilities in detail in the rest of the
paper. In particular the equation modeling the variable F i is examined in
the section on passive gene-environment correlation (section 3.1); and the
model for the variable Xi

j is analyzed in the section on measurement error

4.1, where we discuss how we plan to estimate equations (21) and (23), thus
providing a link between theory and empirical analysis.

3. Invariant Measures

We now show that an invariant measure exists, and has some interesting
properties. Existence of the invariant measure is far from immediate because
the process on distributions of skills and income in our model is non-linear.
The non-linearity follows from the matching process: in every period the two
distributions (for potential mothers and fathers respectively) are shuffled by
the matching to produce a measure on the product space of spousal pairs.

A few preliminaries are necessary for a good understanding of the state-
ment. We call the skill allele at some locus the allele which yields a higher
value of the skill (more precisely, it has a higher genic value). 15 We will
find that, at equilibrium, matching is random within each worth class, thus
alleles are in Hardy-Weinberg equilibrium at all loci, but the frequency may
differ across classes. We recall that a population is in Hardy-Weinberg equi-
librium at a bi-allelic locus (with alleles denoted A and a, and frequency of
A equal to p) if the frequency of the three combinations (aa, aA,AA) are
respectively ((1 − p)2, 2p(1 − p), p2); these are the combinations obtained
by independent combination of two gametes carrying A or a (one from the
father and one from the mother) with probability p and 1 − p respectively.
Under some assumptions (described in detail, for example, in section 3.1
of Nagylaki (1992) or section 2.2 of Crow and Kimura (1970)), and in par-
ticular the assumption that mating among male and female is random, a
Hardy-Weinberg equilibrium is reached in one generation, and maintained
in all following generations. Finally, recall that we assume (equation (22))
that skill affects income, but the total coefficient of household’s income on
children’s is less than 1. We can state:

Theorem 3.1. Assume (22), and that the worth of an individual depends
linearly on income and skill. Then for any vector of allele frequencies:

(1) An invariant measure exists, which induces that allele frequency;
(2) Within each worth class, alleles at each locus are in Hardy-Weinberg

equilibrium;
(3) Within each worth class of the discrete partition, a higher income of

both parents implies a lower expected polygenic score of the child;

15The genic value is a measure of the contribution of the allele to the phenotype of
interest, the skill in our case (see for example page 117 of Crow and Kimura (1970)).
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(4) The allele frequencies are invariant across periods.

Some remarks may help to clarify the statement. An invariant measure
exists in spite of the process being non-linear, and for any initial allele
frequency. The proof relies on the order structure of the genotype and in-
come space. The Hardy-Weinberg equilibrium holds, but only within worth
classes. One can thus compute the fixation index, which is a measure of
populations differentiation due to genetic structure across populations (in
our model, populations are income and skill classes). The deviations from
Hardy-Weinberg in the population may be small, since the phenotype is
highly polygenic, and the size of GWAS coefficient declines quickly. Still,
as we are going to see in section 3.2.2, the model predicts a stratification
across populations of the alleles with stronger effect. Higher income of both
parents is compensated by the lower skill implicit in the genotype (the third
statement). The last statement shows that frequency in the population of
each allele does not change from one period to the next. So there may be
many invariant measures depending on the initial condition (at least 2K , see
proposition A.4). The intuitive reason for the invariance property is that, as
long as income does not affect the relative fertility for different genotype and
income, the specific features of the mating process may affect the association
of genotype and income, but can only reshuffle the existing alleles. The lack
of differential effect on fertility is a strong assumption, particularly when
we are interested in secular development, and examining the implications of
relaxing it is an essential next step in research.

3.1. Gene-Environment Correlation. In our estimation (presented in
sections 5) of the two equations (21) and (23) we will consider among the
independent variables the polygenic score of the parents. We justify here
the reason for this choice. Clearly, all the information on the genotype of
the parents that could be potentially relevant for the determination of the
genotype of the twins is rendered irrelevant by the direct information that
we have on the genotype of the twins. However, the genotype of the parents
can very well have an additional indirect effect of the phenotype of interest
of the off-springs (educational achievement in our case) through the effect of
the environment on the phenotype (passive Gene-Environment correlation,
rGE; Plomin et al. (1977), Scarr and McCartney (1983), Jaffee and Price
(2007)).
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The idea of Gene-Environment correlation (usually denoted rGE) rejects
the assumption that environment and genes are uncorrelated. 16 The corre-
lation may arise in three main ways. The most important for our purposes
is the passive rGE effect. 17 Genes of the parents affect directly the genes
of the children; but they also affect the environment in which the child
grows, hence the potential for correlation between G and E. For example,
higher intelligence of parents, due in part to the genes of the parents, may
be transferred directly through genes to children, but also through the fam-
ily environment created by parents. A related concept, genetic nurture has
been extensively explored in Kong et al. (2018) and Okbay et al. (2022),
and we discuss it below. 18

We now discuss how rGE can be analyzed within our model, and how we
can then estimate it in our data analysis. First, the household income (yi

in equation (23)) is already an example of an rGE path: the income of the
parents is determined in part by their genes (this follows applying the income
equation (21) to the parents) and also by the grand-parents’ genes (iterating
the process) and so on. Similarly, if we include among the variables in the
vector Xi

j the human capital hi of the parents, then applying the human

capital equation (23) to the parents, and iterating, we see that parents’,
grandparents’ genes and so on are relevant. Since the entire ancestry of the
individual enters into the determination of the family income and parents’
education, we refer to this as ancestral rGE. Models of parental investment
as in Becker and Tomes (1979) are a special, very simplified, case of ancestral
rGE. We have information of family income and parents’ education in our
data, and so we can control for its effects. But passive rGE may arise in a
different more subtle way, which we model by considering the case in which,

16rGE is different from Gene-Environment interaction (usually denoted G× E). The
latter describes the idea that even if genes and environment are independent, the way in
which each of the two operates on personality and behavior may depend on the value of the
other; that is, genes and environment do not operate additively. For example, genes may
determine the motivation of an individual (as a personality trait, measured for example by
tasks or survey questions) and environment may offer opportunities (measured for instance
by schooling available in the place of origin); but the resulting success of the individual
(measured by education or income) may be different from a linear combination of the
two. For example, in a poor environments where opportunities are severely constrained,
a person with high motivation and intelligence may fail just as one with low values, and
the difference may emerge only when adequate opportunities are offered.

17The other two effects are evocative and active. The evocative effect refers to the dif-
ference in response that different genotypes induce in the environment; for instance, more
active children are more likely to induce stronger social stimulation from the environment,
and hence richer learning. The active effect is produced by the selection, perhaps pur-
poseful, of different environment in which to operate by different genetic types. These two
effects are harder to estimate in our data.

18Genetic nurture in Kong et al. (2018) is defined to operate through those genes that
are not transmitted from parents to children. The role of family environment in considered
in detail in Willoughby et al. (2021), which is discussed in detail in section 7.
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in equation (23), the variabke F has the special form:

(24) F i = αCmg
i
m + αCf g

i
f

that is, the family environment depends on the genetic profile of the parents
though some k dimensional vectors that may differ for father and mother.
The additive form is the same we make for the genes affecting directly ed-
ucational attainment. In section A.5 of the appendix we provide a detailed
analysis of this case.

We emphasize that the weights αC in equation (24) may be very different
from those estimated by β in section 2.3. In particular very different genes
(more precisely, SNP ’s) can be relevant in equations (3) and (24). We
provide an example of this difference below, where the two sets of genes
are disjoint. We also emphasize that “parents” in equation (24) should be
interpreted in the more precise meaning of individuals providing parents’
role. For example, if the child is adopted then the genotypes (gim, g

i
f ) in

equation (24) are those of the adopting parents, not the biological ones (and
the same holds for yi and hi). With minor changes, the proof of theorem 3.1
holds, and thus in particular existence of an invariant measure holds. We
will refer to this component of rGE as parental rGE.

3.2. Numerical computation. The main properties of the process and
equilibrium distribution of the model in section 3 can be illustrated with
a numerical computation of the equilibrium distribution. 19 We study the
distribution in ∆(G × Y ) in successive generations of a constant size pop-
ulation where each household has two children. The sex of each child is
determined independently (from each other and from the other variables)
with probability 1/2 on each sex.

3.2.1. Speed of Convergence. Convergence to the invariant distribution is
fast, and approximately achieved in our model within five generations. The
value of the ratio of the norm of the difference between current and past µ,
and the norm of the current µ is within ten per cent after five generations,
and 2.26 per cent after ten generations.

3.2.2. Endogenous Population Stratification. The skill alleles have at equi-
librium a frequency that is increasing with worth, education and income. As
we mentioned in theorem 3.1, society is stratified. The effect is strong, and
is stronger the higher the genic value of the allele. Both facts are illustrated
in the left panel of figure 1.

3.2.3. Parental rGE. An intuitive reason for the next result is provided by
a simplified example. Consider the case in which the set of genes (or more
precisely the SNP ’s) that are relevant in equation (3), and the other set of
those relevant for equation (24), have empty intersection. We refer to the
first set as EA (for educational attainment) SNP ’s and to the second as

19Coding in Matlab (R2022b). The Matlab code is available upon request.
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Figure 1. Population Stratification and rGE. Both panels display
the frequency of alleles by income. The flattest line, with smallest difference
across income, describes the frequency of the allele with smallest genic value;
the others are in increasing order. Left Panel: Only child’s genotype affects
income (no passive rGE). Right Panel: Only parents’ genotypes affects
income (full rGE). The figure illustrates how two very different economies
may have very similar statistical properties.
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PC (for parental care). SNP ’s improving parental care also affect positively
education and income of the children. Obviously, children’s parental care
SNP ’s are correlated with those of the biological parents, by 50 per cent
or more (due to assortative mating); and since parents’ PC SNP ’s affect
educational attainment of the children, these SNP ’s will be correlated to
educational attainment, and thus will appear to influence educational at-
tainment directly even if they are not. This is illustrated by the comparison
of the left and right panels of figure 1. The two panels report main features
of two economies that have the same underlying preferences and technology,
but completely different pathways from genes to traits; that is they only
differ in the functions w and F . We will refer to the economy in the left
panel as the EA economy and that in the right panel PC economy for short.
20

The figure illustrates the following results. First, just as in the case in
which the effect on educational attainment is direct, also when the genetic

20 The figure relies on the analysis developed in section A.5. In the notation of that
section, there is a K dimensional vector α such that, in the left panels αA = α, αCm =
αCm = 0; and in the right panels, αA = 0, αCm = αCm = 1

2
α. In simple words, the left

panel describes an economy where all alleles are EA, and no passive rGE exists; in the
right panel, no allele affects educational attainment, and the effect is only through the
environment provided by the parents.
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effect occurs only through parental care there is population stratification,
with higher frequency of the alleles with positive effect in the richer, more
educated population (see left panel). Second, for each allele k the distribu-
tion of income for the three subgroups of the population with g(k) = 0, 1
or 2, is different, even in the economy where there is no direct genetic effect
on education (see right panel). Third, as a consequence of the second point,
the estimated GWAS coefficient for educational attainment are significant
and positive even in this latter economy, where there is no direct effect of
genes on educational attainment.

Obviously, in principle parental rGE affects children’s phenotype. The
real question is: once we control for ancestral rGE, is parental rGE quan-
titatively important, once we control for the ancestral one? In section (7)
we show that the answer is negative.

3.3. Inter-generational mobility: standard and genetic model. In
this section we compare the predictions of the model we have presented with
those of the standard model of parental investment. The model with au-
toregressive transmission of skill (as introduced in Becker and Tomes (1979))
has (adopting our notation to this case) the following equations for income
in generation t:

(25) yt+1 = αIhyt + αθhθt+1 + εyt+1

and for skill:

(26) θt+1 = ηθt + εθt+1

where η ∈ (0, 1) is a fixed “heritability” parameter. Note that there is only
one type of skill. At the stationary distribution, we can compute, using
the Yule-Walker equations, the intergenerational income elasticity ρPM (the
subscript PM stands for Perfect Matching; the reason for this will be clear
in the comments following equation (32) below. will be soon clear) to be:

(27) ρPM = αIh + αθh
ηE(θy)

V(y)

where V denotes the variance of a random variable, and E(θy) and V(y)
have an explicit expression in terms of the primitive parameters. 21 When
σεy = 0, the inter-generational persistence formula (27) becomes the well

21The explicit expressions are:

(28) V(θ) =
σ2
εθ

1 − η2

(29) E(θy) =
αθhV(θ)

1 − αIhη

(30) V(y) =
1

1 − α2
Ih

(
α2
θhV(θ) + σ2

εy + 2αIhαθhηE(θy)
)
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known formula (see e.g. Solon (2004)) in which persistence is a simple
weighted average of the income and skill transmission:

(31) ρPM =
αIh + η

1 + αIhη

A direct comparison of the standard model (equations (25) and (26)) with
a genetic model like (20) and (21), where sex is an essential component of
reproduction, is meaningless, since, apart from the genes, there are not even
two parents in the standard model. So we must first build a more general
model which includes the standard one as a special case of the general class
of models (with gametic reproduction, as is the case for human population)
in sections A.1 and 2.7. We assume income and skill to be the weighted
average of the income and skill of the two parents, as in equations (49) and
(50). Thus, the income of the child follows the equation:

(32) yt+1 = αIh
∑
i=m,f

wyi yit + αθhθt+1 + εyt+1

and the skill transmission follows:

(33) θt+1 = η
∑
i=m,f

wθi θit + εθt+1

The matching between parents that decides the pairing of (θmt, ymt) with
(θft, yft) is determined by preferences and stable matching as in section A.1.
The standard model (25 - 26) becomes a special case of (32 - 33) when we
assume that preferences of mothers and fathers are lexicographic (with any
order on θ and y) and µm = µf , so matching occurs only among identical
types (Perfect Matching, hence the PM subscript).

We now show that the formulas for intergenerational income elasticity (27)
or (31) of the standard model are an upper bound on the persistence within
the class of models requiring equations (25), (32) and (33). The reason is
that, as we have just seen, the standard model maximizes the similarity
among parents, forcing their income and skill to be identical. For example
consider the case where parents match only on income, but may differ in
skill. This happens when preferences are linearly ordered by the income of
the spouse. In this case, the corresponding intergenerational elasticity, call
it ρMY , can be shown to satisfy:

(34) ρMY < ρPM

The proof is in section A. We can now discuss the relation between pre-
diction of the standard and genetic model on the important issue of the
size of intergenerational mobility. The standard model with autoregressive
transmission of skill assumes a fixed η (in equation 26). Such a fixed pa-
rameter, however, has no correspondent in reality: the genetic model shows
that the persistence represented by that η is endogenous, and depends on
the distribution of the genotype. Therefore the corresponding elasticity, call
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it ρG, also does depend on the distribution, which is different in different
populations. So persistence may differ among populations independently of
preferences, technology and institutions in the economy, but depending only
on the distribution of the genotype in that population.

An important implication of the differences we have highlighted so far
is that the persistence in a model with genetic transmission of skill can be
higher than the one in the the standard model, even higher than the high-
est possible value in the class of standard models with sexual reproduction
(presented in equations 32) and (33)). That is, it may be the case that
ρG > ρPM . It follows in particular that the adoption of the amended model
with AR(1) transmission and sexual reproduction (equations (32 –33)) might
make predictions worse, by further underestimating the persistence.

We illustrate this possibility in a simple but clarifying example. Take K =
1 (a single locus with alleles {A, a}), with frequency p(A) of A, determining
a one dimensional skill θ ∈ {θ0, θ1, θ2}, ordered as the index. Preferences are
determined by the household maximization problem, hence are described by
(52); and to ease comparison with the simple form (31) we assume σεy =
0,Π = 0, F = 0, εθ = 0.

This economy has a stationary distribution at two values:

(35) (0, y0, θ0) with prob 1− p(A), (2, y2, θ2) with prob p(A),

where

yi =
αθhθi

1− αIh
.

The persistence here is 1, and this can never occur in an autoregressive
model with η < 1.

The example is obviously artificial in the assumption that a skill phe-
notype is determined by a single locus, whereas the skills of interest for
economic applications are highly polygenic. The force highlighted by the
example, however, is not at all artificial, and points to the effect that assor-
tative mating has on increasing the variance of genetic values, and magni-
fying the heritability and the resemblance between relatives. 22 This effect
is absent by assumption in the autoregressive model, even in the amended
version on which two partners are introduced, given by equations (25), (32)
and (33).

4. Estimation Strategy

Our empirical analysis will estimate equations (21) and (23). In the next
two subsections we discuss the introduction into the analysis of the genotype
of the parents among the explanatory variables (Xi

j) and the additional

22This force is well recognized in population genetics: see chapter 4 of Crow and Kimura
(1970), in particular sections 4.6 for our single locus example and 4.7 for a multivariable
example. The analysis in population genetics is very different form the one we present here
because the assortative mating in our model is endogenous and determined at equilibrium
in the marriage market.
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information we can derive from a special subset of our data, the DZ twins.
We recall that the joint distribution of genotypes is described by equations
(18) and (19)

4.0.1. Correlation among Twins. In the fixed effects analysis below we rely
on the fact that DZ twins share important environmental characteristics,
but do not entirely share the genotype. The degree of the sharing depends
on the nature and strength of the assortative matching between parents. Ge-
netic correlation among parents may occur for two different types of reasons.
Correlation may exist because matching is directly on the relevant phenotype
(for example, the correlation on genes affecting intelligence among parents
occurs because parents match according to intelligence); or it may occur
indirectly, when matching occurs along dimensions unrelated to the pheno-
type (for example, matching occurs along the characteristics in the set C
of physical appearance), but due to population stratification a correlation
between genes affecting variables in C and Θ exist. 23

Whatever the cause, the correlation for DZ twins is a simple function of
the correlation between the PGS of the parents. We use the subscripts 1, 2
to indicate that the variable refers to first and second sibling; and subscripts
m and f , for mother and father respectively. Then:

Lemma 4.1. The correlation between the standardized PGS of non identical
full siblings, hence in particular of DZ twins, is equal to 1

2 plus half of the
correlation between the standardized PGS of the parents, that is:

E(PGS1PGS2) =
1

2
+

1

2
E(PGSmPGSf ))

The proof is in section A.3. 24 Lemma 4.1 gives the predicted correlation
among DZ twins as a function of the correlation among parents. In section
7 below we present the correlation among parents’ PGS, and find that data
are consistent with the prediction of the lemma.

In the next sections we will test and estimate the parameters of the two
equations (21) for income and (23) for human capital. The data we use are
described in detail in section 9.

4.1. Measurement Error and SEM . Reliable estimates, for example
that of the path from genetic factors to educational outcomes, must take

23We can illustrate this second possibility considering the extreme case in which there
is no overlap between loci affecting the θ skills and the characteristics in C, and matching
along C characteristics is perfect. In this case the stationary distribution has segregated
populations with different frequencies on the alleles determining θ, thus different distribu-
tions on the θ skills. This equilibrium is not robust, of course: with a small imperfection
in the C-matching the frequency of the θ alleles converges exponentially in the long run
to a value independent of the C characteristics; however, the transition is slow when the
imperfection is small and in the transition the correlation may be substantial.

24On the related, but different, issue of segregation variance (that is, the variance of
the offspring about the mid-parent value), see Rogers (1983).
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into account errors in measurement of the variables. This is obviously im-
portant if we want to minimize downward biases of single coefficients; but it
is even more important if we want to compare the relative size of the effect
operating through cognitive and non cognitive skills, since the error in mea-
surement might be different for the two groups of variables. For example, it
might be natural to expect a larger error in measures of non cognitive skills,
based on surveys, than in cognitive, based on tests. We model explicitly and
estimate errors in measurement using a structural equation model, (SEM).

The SEM we consider is of the usual (see for example Bollen (1989))
form:

(36) Y = BY + ΓX + αY + ζ

with Y a m-vector of mY endogenous observed variables, y, and mη en-
dogenous unobserved variables η; X an n-vector of exogenous nx observed
variables x and nξ exogenous unobserved variables ξ, αY a vector of means,
and ζ a vector of errors. Entries of B are denoted by β’s, entries of Γ by γ’s.
In this section we adopt the notation convention that variables with capital
first letter are endogenous, and lower case first letter are endogenous. 25

We set up our analysis adopting a general form (36) to test the basic
equations of the model, with basic equations (21) and (23). Specific ex-
amples are the system of equations (39) – (40) and that of equations (43)
– (45). We recall that the variables in the vector Xi

j for ij (introduced

in section 2.3) are not necessarily observed, so we add equations providing
measurements of these latent variables. They may also be endogenous, so we
add equations describing how they are determined. Examples of variables
which are components of Xi

j are the latent endogenous variables C and NC

(cognitive and non-cognitive skills, in equations (37) and (38)), (these are
the η-variables); observed endogenous variables eh and yh in equations (43)
and (44), (y-variables); and finally pGSm and pGSf , exogenous observable
x-variables in equations (43) – (45).

5. Income and Human Capital Determination

We first estimate the parameters of the model presented in section 2.7.
Table 1 below reports the panel regression of the log income at the age 29
take over family income, PGS, and other control variables. Estimates re-
ported in the table control for the difference in the age of the individuals
(parent or child) at which the information on income was collected. Since
wage increases with age at a rate that may be heterogeneous (Rupert and
Zanella (2015), Lagakos et al. (2018)), this difference may introduce a bias
in the estimated coefficient, if the slope depends on characteristics like edu-
cation that are correlated with wage. We use a specification of the Mincer
(1974) equation which has that of Lagakos et al. (2018), 26 as special case,

25This carries the modest price of changing PGS to pGS
26Specifically the formulation given in section VI A.
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allowing the slope to depend on education. If the slope increases with ed-
ucation, we expect the estimated elasticity coefficient to overestimate the
true value; thus we control for the time difference, education of the parents,
and an interaction term.

Table 1. Income at the age 29 take, family income, PGS, and Per-
sonality. All variables, including College of parents and Male, are standard-
ized to mean zero and SD 1. The signs of MPQ variables NA, Externalizing
and Academic problems are reversed. Controlled for PC’s and the parents-
child time difference in age at income data collection.

(1) (2) (3)
b/se b/se b/se

Family Income 0.134*** 0.128*** 0.078**
(0.027) (0.027) (0.032)

Male 0.277*** 0.276*** 0.313***
(0.025) (0.025) (0.029)

Male × Family Income –0.060** –0.060** –0.050*
(0.025) (0.025) (0.030)

PGS 0.078*** 0.021
(0.025) (0.028)

Education Years 0.256***
(0.035)

IQ 0.008
(0.029)

MPQ PA 0.061**
(0.026)

MPQ NA –0.024
(0.027)

MPQ CN 0.034
(0.032)

Externalizing –0.072*
(0.037)

Academic effort 0.057
(0.038)

Academic problems –0.017
(0.034)

N 2100 2100 1485

The estimated unconditional inter-generational elasticity (IGE) is 0.134 (SE
= 0.027); the table (Model (1)) reports the values after control for sex and
interaction between sex and family income. Age has not a significant effect,
as might be expected since since individuals in the sample are approximately
the same age. Sex of the individual has a strong and significant effect: in-
come for male individuals has a substantially larger intercept (27.7 per cent),
but a smaller (by 6 per cent) dependence on the family income. The fraction
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of males in the twins population is 48 per cent; thus, the standardized male
variable is approximately equal to 1 for male and −1 for female.

In Model (2), the coefficient of the individual polygenic score is 7.8 per
cent (SE = 0.025, p-value = 0.002). Its size is approximately half of that of
family income (12.8 per cent). Considering that the polygenic score we are
using is estimated from coefficients from a GWAS for education, it is likely
that the weight of genetic factors affecting income is higher.

Model (3) in the table presents controls for some of the variables that
are likely to mediate the effect of the polygenic score. Education Years is
the most natural variable to capture the effect of the polygenic score in
education, and in fact the estimated coefficicent is large (25.6 per cent, (SE
= 0.035), p-value < 0.001) and significant. 27

The controls for principal components and the difference in the age of par-
ents and children at the collection of data on income produce no significant
coefficient; the IGE falls after the control for difference in age, as expected,
but in small measure (in the order of 10 per cent). Controls for additional
variables (in particular Education of Parents, Polygenic score of father and
mother) produces elasticity coefficients that are small and non significant,
with no effect on the coefficients of the variables of more significant interest.
28

The values of IGE are on the lower side of the currently available es-
timates for developed countries, which vary between a minimum of 0.2
and 0.4 (see for example Zimmerman (1992), Solon (1992), Lee and Solon
(2009), Mazumder (2005); and surveys in Björklund et al. (2012) and Blan-
den (2011)). The coefficient reaches higher values in some studies: see for
example Palomino et al. (2018) who in a finer analysis (taking into account
quartiles of the distribution), show it can take larger values for the highest
and lowest levels of income. There are some possible explanations for this
difference. One is measurement error in our income data. Another is that
in some developed countries with European population the IGE coefficient
is lower. For example, in Sweden (a country that is more relevant given the
demographic composition of Minnesota at the time in which the data were
collected) values are lower (see for example Österberg (2000) where values
are around 0.125 (page 427)); although it can be substantially higher at
higher values of income (see Björklund et al. (2012)) which are less relevant
for our sample.29

27Note that the sample size is smaller because several variables are missing for some
subjects.

28The coefficients are: 0.004, (SE = 0.166) for parents’ education, −0.03, (SE = 0.037)
for mother’s PGS, and 0.04, (SE = 0.038) for father’s PGS.

29See Björklund and Jäntti (1997) for a comparison of Sweden and USA on inter-
generational mobility who find mobility higher in Sweden.
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6. Identifying the path from PGS to education

In this section we identify how much of the effect of PGS on educational
achievement can be attributed to factors such as cognitive or non cognitive
skills.

In our estimates below the vector Y has a vector η of endogenous latent
variables equal to (C,NC), denoting cognitive and non-cognitive skills re-
spectively. The structural observed component of the Y vector is number of
education years of the twins, e: we focus of this measure (rather than col-
lege, or GPA) because it is the most relevant for economic consequences. The
measurement variables in Y are a vector of ((cti)i=1,...,Ict), (nctj)j=1,...,Jnct)
of measurements of cognitive and non-cognitive skills. Turning to the vector
X, in our case x ≡ ((xk)k=1,...,K) is a vector of control variables, such as
household income variables, education and polygenic score of parents, the
principal components, age and sex. The system we estimate is:

(37) C = βC pGS + ζC

(38) NC = βNC pGS + ζNC

(39) cti = αcti + γCctiC + ζcti , i = 1, . . . , Ict

(40) nctj = αnctj + γNCnctjNC + ζncti , j = 1, . . . , Jnct

(41) e = αe + γCe C + γNCe NC +
∑
k

γxke xk + ζe.

(42) γCct1 = γNCnct1 = 1.

The PGS may be added to the right hand side of the equation (41) with
little consequence. The normalization condition (42) is necessary because
any multiplication of the variables βC and ζC by a positive constant, and cor-
responding division by the same constant of the vector (γcti : i = 1, . . . , Ict)
gives a new vector of parameters, with the corresponding random variables
still satisfying the system of identification equation; a similar re-scaling of
βN , ζN and (γncti : i = 1, . . . , Jct) would have the same effect. Hence the
two normalization conditions (42). With this normalization, the model is
identified, if there are at least two cognitive and two non-cognitive tests.
More precisely:

Proposition 6.1. Assume Ict ≥ 2 and Jnct ≥ 2, then the system (37)-(42)
is identified.
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Proof. Substituting equations (37) and (38) into the equations (39) - (41)
reduces the system to a system of observed variables. We indicate by σ2

X
the variance of a variable X. The simpler system in observed variables can
be solved recursively for the parameters in the following order: σ2

pGS , βC ,

βNC , γCcti , γ
NC
ncti , σ

2
ζC

, σ2
ζNC

, σ2
ζcti

for all i 6= 1, σ2
ζnctj

for all j 6= 1, γCe , γNCe

and finally σ2
ζe

. �

Table 2. SEM of Pathways from PGS to Education Years. The
model estimated is described in equations (37) to (41). All observed variables
standardized to mean zero and SD 1. Cognitive skills test scores (ct’s) are
verbal and performance IQ, non-cognitive (nct’s) are the three broad MPQ
dimensions. Standard errors estimated by bootstrapping. N = 852. Model
vs saturated: Pr > χ2 < 0.0001.

Equation Variable b z p value CI

Ed Yrs C 0.285 4.87 <0.001 [0.171, 0.401]
(0.058)

NC 0.856 3.11 0.002 [0.315 , 1.4397]
(0.276)

PGS 0.014 0.35 0.725 [-0.066 , 0.94]
(0.041)

PGS mother 0.033 0.71 0.282 [-0.027 , 0.093]
(0.030)

PGS father 0.019 0.66 0.512 [-0.039 , 0.078]
(0.030)

Educ Parents 0.136 4.58 <0.001 [ 0.078 , 0.194]
(0.29)

Family Income 0.075 2.38 0.017 [ 0.013 , 0.137]
(0.031)

Male -0.151 -2.77 0.007 [-0.260 , -0.041]
(0.055)

Constant 0.376 9.85 <0.001 [ 0.301 , 0.450]
(0.027)

C PGS 0.287 9.21 <0.001 [ 0.226,0.349]
(0.031)

NC PGS 0.040 1.95 0.051 [-0.0002, 0.081]
(0.025)

The structural component of the SEM estimation is reported in table
2. In the equation for education years, the coefficient both C and NC
are significant. We can compute with the delta method the product of the
coefficient for the link from the PGS to the variable C, times the coefficient
from C to Education Years. The value of the product is 0.082, (SE =
0.018, z = 4.53, p-value < 0.001), with confidence interval [0.046, 0.117].
The corresponding product for the path passing through NC has a value
of 0.034, (SE = 0.019, z = 1.8, p-value= 0.071), with confidence interval
[−0.003, 0.072].
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Once we control for C and NC, the coefficient of the PGS is not sig-
nificant (p-value = 0.725). For comparison we note that in the regression
restricted to twins, controlling only for sex, the coefficient is 18.7 per cent
(SE = 0.022, z = 8.37, p-value < 0.001). The coefficients of education of
parents and family income are both significant, of the same order of magni-
tude, but education of parents (13.6 per cent (SE = 0.029, z = 4.58, p-value
< 0.001)) is approximately twice that of family income (7.5 per cent (SE =
0.031, z = 2.38, p-value = 0.017). The PGS of parents is not significant.

7. Fixed Effects Analysis and parental rGE

In this section we estimate the equations for income and human capital
using two important additional pieces of information: the fact that children
are twins, both DZ and MZ, the overlapping generation structure of the
model, and the information, including the genetic one, on parents. We begin
with the analysis based on DZ twins.

7.1. Fixed Effects Analysis with DZ twins. DZ twins offer a uniquely
informative way for the analysis of the effect of genetic variables on educa-
tional achievement. DZ twins share many significant variables: date and
condition of birth, family background and very similar family environment
in the following years. Therefore, a fixed effect analysis of measures of edu-
cational achievements regressed on PGS, once restricted to DZ twins, will
control for the effect of environmental factors common to the two twins.

We have seen in section 4.0.1 the theoretical estimate of the correlation
among DZ twins depending on the degree of assortative mating of the par-
ents. The difference in PGS correlation and the predicted correlation with
random assortative matching (which is 1

2) is 0.083 and it must be due to
the assortative matching among parents. In our case we are considering not
the genome-wide correlation 30 but the one between PGS of parents. The
correlation coefficient between PGS of the two parents is r = 0.152). As
discussed recently in the literature (see Abdellaoui et al. (2014), Robinson
et al. (2017)), the estimate of genetic assortative mating can be influenced
by population stratification, which may produce spurious correlation. For
example, the genetic assortative mating estimated in Domingue et al. (2014)
becomes insignificant when a control with principal components (PC’s) is
performed. 31 In Table S-10 of the appendix (section S-0.5) we report the
controls for PC’s in our data. The table shows that the estimated correla-
tion in PGS of spouses is robust to such control. This correlation is to be
expected, given the strong correlation between education years of the two
parents: for education years, the correlation coefficient is r = 0.522, for IQ
is 0.37.

30See Robinson et al. (2017), Supplementary Note, page 12.
31See Section S2 Principal Components of Domingue et al. (2014), Table S1. These

are the same tests we use in Table S-10.
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The fixed effects analysis is presented in tables S-2, S-3, S-4, S-5, for ed-
ucation years, GPA, college and IQ score respectively. All the regressions
show that the coefficient of the PGS is significant in the fixed effects regres-
sion. In the case of GPA the coefficient is large and is approximately equal
in the two regressions.

7.2. The Explanatory Power of Parents’ PGS. A different way to con-
trol for the effect of genetic endowment of parents on family environment is
to control directly for their PGS; in this case we can use the information
on both types of twins, including MZ.

The system we estimate is presented in equations (43) to (45), and is a
special case of the general SEM structure in the general system (36), with
the same interpretation for the parameters αY , β, γ and σ as in section 4.1.
As usual, the superscript i refers to the family, and the subscript j to the
twin. The variables eh and yh denote education of parents (average of the
education years of the two parents) and family income. The y variables are
(eh, yh, e); the x variables are (pGSm, pGSf , pGS). There are no exogenous
latent ξ-variables. The equations of the model are: Note that differently
from the estimate reported in table 2, we are not controlling for C and NC
variables. Our model is:

(43) eih = αeh + γpGSmeh
pGSim + γ

pGSf
eh pGSif + ζeh ;

(44) yih = αyh + γpGSmyh
pGSim + γ

pGSf
yh pGSif + ζyh ;

(45) eij = αe+γehe e
i
h+γyhe y

i
h+γpGSe pGSij +γpGSme pGSim+γ

pGSf
e pGSif +ζe.

With this formulation we can take into account the difference in polygenic
score of the DZ twins, and still use the information on MZ twins (see Okbay
et al. (2022) for a justification of this method). The estimate of the SEM
model is presented in table 3.

Education of parents and family income have a strong and significant
influence on educational attainment of the twins, thus they exert their in-
fluence though this channel in addition to the direct one of the genotype of
the twins. However, the coefficients of the two parental polygenic scores,
which could potential report additional unobserved channels from genotype
of parents to education years, are not significant, although they are of course
large and significant in the equations for both family income and parents’
education. This finding is consistent with the result reported in Willoughby
et al. (2021): conditioning on parental IQ and socioeconomic status sub-
stantially reduces the effect of parental genotype. Within our model, this
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result is an implication of the identification of family income and parental
education 32 as the pathways of the effect of family background. 33

The results are similar if we introduce explicitly a latent variable F of
family environment, affected by the PG of the parents, and modify the
education years equation as:

(46) eij = αe + γehe e
i
h + γyhe y

i
h + γFe F

i + γpGSe pGSij + ζe.

PGS of parents significantly affect education of parents and income of the
family; and in turn education of parents and income of the family affect
education years of children, but F has little residual influence.

32These variables were not considered not considered Willoughby et al. (2021).
33For the record, the coefficient of the score of the mother is significant at the 10 per

cent level.

Table 3. SEM of Pathways from PGS to Education Years. The
model estimated is described in equations (43) to (45). All observed vari-
ables standardized to mean zero and SD 1. Standard errors estimated by
bootstrapping. N = 802. Model vs saturated Pr > χ2 < 0.0001:

Equation Variable b/se z p value CI

Educ Parents PGS mother 0.182 5.62 <0.001 [ 0.118 0.245]
(0.032)

PGS father 0.301 8.96 <0.001 [ 0.235, 0.367]
(0.033)

Constant 0.066 2.00 0.045 [0.001, 0.132]
(0.033)

Family Income PGS mother 0.091 3.12 <0.001 [ 0.034, 0.149]
(0.029)

PGS father 0.154 5.05 <0.001 [ 0.094, 0.213]
(0.030)

Constant 0.131 4.28 <0.001 [ 0.070, 0.198]
(0.030)

Ed Years Educ Parents 0.183 8.76 <0.001 [ 0.142, 0.224]
(0.021)

Family Income 0.112 4.84 <0.001 [ 0.066, 0.157]
(0.023)

PGS 0.103 4.84 0.002 [ 0.038, 0.167]
(0.032)

PGS mother 0.052 2.26 0.094 [-0.006, 0.084]
(0.023)

PGS father -0.003 -0.13 0.899 [-0.051, 0.044]
(0.024)

Male -0.139 -2.85 0.004 [-0.235, -0.043]
(0.048)

Constant 0.345 13.43 <0.001 [ 0.284, 0.395]
(0.025)
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We find similar results if we consider different measures of educational
attainment. For example, if we take the variable eij to be a binary variable

indicating whether the twin has a college degree or not (and estimate the
correspondent of (45) with a probit model) we find the coefficients of eh to
be 0.35 (SE = 0.05, z = 6.98, p value < 0.001; marginal effect 12 per cent);
for yh the coefficient is 0.21 (SE = 0.057, z = 3.76, p value < 0.001; marginal
effect 6.7 per cent). The estimated coefficient for the polygenic score of the
twin is 0.16 (SE = 0.043, z = 3.67, p value < 0.001; marginal effect 5.4 per
cent).

7.3. Regression on Parents’ PGS. In this section we see that if we
regress variables of interest on the polygenic score of the children and we
include that of the parents, we typically find the coefficient of the parents’
score to be significant and positive. This finding provides evidence that the
genes of parents affect success of children in addition to the direct effect
on the genes of the children. After we control for education of parents and
family income, the coefficient of the parents’ PGS is insignificant, while the
coefficient of the PGS of the twin stays significant. This second finding sug-
gests that income and education of parents channel most of the additional
effect of parents’ genes.

We present the results in section S-0.4 for education years (table S-6),
GPA (S-7), college (S-8) and intelligence (S-9). These results are consistent
with earlier findings of passive rGE, 34 but add insight in the mechanism
from genetic profile of parents to children’s outcomes: most of this effect is
channeled by parents’ education and income, with parents’ education typi-
cally the largest and most significant.

When we control for education of parents and family income (see model
(4) in equation S-6), the coefficients of the PGS of the parents is substan-
tially reduced and not significant. In this model the fraction explained by
education of parents is large (coefficient is 0.116, (SE = 0.025), and so is
the case for family income (coefficient is 0.083, (SE = 0.028)). Interestingly,
the coefficient of the mother’s polygenic score shows some modest effect in
models (2) and (3), that is even after we condition for IQ and soft skills. The
same result of the decline of decline of significance of the PGS of parents
holds for other indicators of educational attainment, such as college and the
GPA index, reported in tables S-7 and S-8.

In conclusion, we add two findings to the analysis in Kong et al. (2018)
and Willoughby et al. (2021), where evidence of a passive gene-environment
correlation is reported. Fist, we identify, consistently with the model we de-
veloped in the theory section 2, and with the more general theory of parental
investment, two paths through which genetic factors of the parents operate
indirectly, namely family income and education of parents; education of
parents with a larger coefficient than family income. Second, we show that

34See Kong et al. (2018), see also the analysis in Willoughby et al. (2021).
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once these two factors are taken into account, there is no significant residual
indirect effect. 35

8. Conclusions

Our analysis has been setup as a natural extension of theories of parental
investment and intergenerational mobility (as in Becker and Tomes (1979)
and in the large literature building on that model), but replaced the ad hoc
assumption of an asexual AR(1) process with a fully specified formulation of
genetic transmission of skills from a pair of parents in a stable non-random
mating equilibrium. Our model provides the basis for an economic analysis
of genetic factors in education and intergenerational mobility; it is more
realistic than the existing models, and it is still analytically manageable so
that it can be tested in the data. Our data analysis provides a proof of
concept of this statement.

Realism of the assumptions would matter little, perhaps, if the predictions
of the alternative models were similar. We have shown instead that the pre-
dictions of our model of intergenerational mobility differ substantially from
the standard model. Most notably, there is no constant heritability coeffi-
cient as in the standard model; instead heritability is determined endoge-
nously and depends on the probability distribution of the genotype and on
the features of the assortative mating, hence ultimately on the mating pref-
erences of the agents. We have concluded in our analysis that the standard
model is likely to underestimate the intergenerational elasticity of income.
Our model also allows a precise test of important features affecting intergen-
erational mobility, such as assortative mating and passive gene-environment
correlation, which is the effect of genes of parents operating (over and above
the direct effect on genes) though the environment provided by parents to
children. If we want to analyze precisely the relative weight of nature and
nurture, an issue which is crucial for a variety of public policies, economic
theory will need to adopt models that incorporate this information explic-
itly. The difference between standard and fully specified genetic models will
become even more consequential as more precise estimate of the link between
genes and phenotypes of economic interest, as well as richer information on
the genetic profile of individuals, become available.

In our empirical analysis we confirm earlier results that genetic factors
measured by the PGS have a large effect on educational achievement, for
example raising the fraction achieving college from about 20 per cent in the
low decile of the score to about 60 per cent in the top decile. Very different
pathways of the effect of PGS could be consistent with this finding: for
example, the effect might be entirely due do discrimination operating on
individual characteristics that are genetically based but irrelevant for the

35Within the model defined precisely here, there is little evidence of genetic nurture,
as defined in recent literature (see for an in depth discussion Wang et al. (2021), Okbay
et al. (2022)).
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technology of educational achievement. These discrimination effects are less
likely for components that operate through Intelligence and Personality;
any fraction of the explanatory power of the PGS that can be attributed
to the mediation on these individual characteristics is less likely to operate
through discrimination. Regression analysis show that the pathways occur
in a significant part through Intelligence and Personality, and that the size
of the effect of Intelligence is overall stronger.

Our data include information on the genetic profile of the parents, so we
can test directly size and significance of the effect of genotype of parents
on the environment of children (passive rGE). Our analysis decomposes
this effect into two different paths: one operates through genes that affect
directly educational attainment of the parents, but influence the environ-
ment of the children indirectly through the effects on income ad education.
This first is the path that economists have analyzed with model of parental
investment. A second path operate trough genes that affect directly the
environment of the children without affecting educational attainment of the
parents, and thus their income and education. Our analysis of the data
suggest that most of passive rGE operate though the first channel; within
this channel, education matters more than income.

Fixed effects analysis on DZ twins is performed exploiting the informa-
tion we have on the genotype, summarized by the polygenic score, which
is identical for MZ twins and differs among DZ twins, in a measure that
depends on chance and the degree of assortative mating between the child’s
parents. Our results shows significant effect of PGS on a measure of aca-
demic performance at school (the GPA score), intelligence as well as in
educational achievement, in particular college degree. This final result pro-
vides an important support for our conclusion, since DZ twins share very
similar environments in their formative years, but are significantly different
in genotype, in spite of assortative mating. The analysis of the pathways
operating from genes associated with educational attainment though cogni-
tive and non cognitive skills show that the largest effect is through cognitive
skills. 36

9. Description of the Data

Individuals in the sample we use here are twin participants in the Minnesota
Twin Family Study (MTFS) (Iacono et al. (1999), Disney et al. (1999)), which
includes two cohorts of twins, one assessed initially at a target age of 11 (N=1512)
and a second assessed initially at a target age of 17 (N=1252), and subsequent
follow-up assessments undertaken at target ages of 20, 24 and 29 for the older
cohort and 14, 17, 20, 24 and 29 for the younger cohort. The participation rates in
the follow-ups of MTFS have generally been above 90 % (see McGue et al. (2014)).

36This conclusion is different from the one reached in McGue et al. (2020) and McGue
et al. (2017), using the same data. The reason for the discrepancy is ex-post clear. Both
these papers do not set up the analysis as a test of a fully specified model of parental
investment, and ignore key variables in the analysis, such as household income.
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9.1. Measures of Income. Data on income of parents and twins were collected
at different points in time. The age of parents at the moment in which the data
on income was collected is higher than the age of the children by approximately 10
years. We control for this difference in the estimation (see the discussion preceding
table 1). The measure of Parents’ Income was collected on a 13-point, self-report

scale that ranged from 1 = less than $10,000 to 13 = Over $80,000. 37

A first assessment of the income of the twins was collected at the age 29 assess-
ment, and was the answer to the question: ”What is your annual income before
taxes (in thousands of dollars?”. No specific band of income was suggested. In the
analysis the data on income are translated into dollar amount, then log transformed,
and standardized.

9.2. Measures of Human Capital. Information on educational achievement in
the sample is provided by a classification of the individual in seven classes, described
in Table 4. Data on academic performance of the twins in school were collected in a
dedicated academic history interview, given to both mother and child. Four scores
were calculated: GPA, Behavior Problems, Academic Problems and Academic
Motivation.

The GPA score used here is a GPA-like index, not the actual GPA. Five ques-
tions in the Academic History survey asked separately both the mother and the
child about grades the child was getting in school. The questions provided a 5-
point letters scale, from A to F for the answer. The questions asked about grades in
(a) Reading/English, (b) Arithmetic/Math, (c) Science, (d) Social Studies/History,
and (e) Overall. The GPA score was then calculated to represent an average of
items a−d transformed to a four-point scale. In a validation sample (Johnson et al.
(2004)), the correlation between reported grades and actual GPA from school tran-
scripts exceeded .8.

Table 4. Education years variable. The variable “Class” is a coarser
classification used in the analysis.

Education level Class Years
less than HS 1 10
GED 1 11
HS 2 13
HS + Vocation 3 14
Community college 3 15
College 4 19
Professional degree 5 22

37The precise bands were: less than $10K, $10,001 to $15K, $15,001 to $20K, $20,001
to $25K, $25,001K to $30K, $30,001K to $35K, $35,001K to $40K, $40,001K to $45K,
$45,001K to $50K, $50,001K to $60K, $60,001K to $70K, $70,001K to $80K, more than
$80K.
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9.3. Explanatory variables. A specific strength of our data is the availability of
information on variables that are natural candidates to provide an explanation of
the way in which the genetic profile of individuals, summarized by the PGS, can
affect educational achievement. We describe these data here.

Computation of PGS. We constructed the polygenic scores predicting years of ed-
ucation from the summary statistics released by Lee et al. (2018), with the cohorts
23andMe and MTFS removed. The weights of the SNP ’s in the score were then
calculated with the software tool LDpred (Vilhjálmsson et al. (2015)), which uses
an external sample to estimate the correlations between SNP ’s in order to convert
the univariate regressions coefficients in GWAS summary statistics to partial re-
gression coefficients. We used the data in MCTFR parents of European ancestry
to estimate the correlations between SNP s and calculated the partial regression
coefficients of the 450,000 SNP s that were originally genotyped in MCTFR and
survived all default software filters. We set the LDpred shrinkage parameter equal
to unity–the highest possible value and the one leading to the least shrinkage of the
PGS weights. This choice, sometimes regarded as the most conservative, was fol-
lowed by Lee et al. (2018). Our experience has shown that varying this parameter
over a tenfold range scarcely influences the prediction R2 (e.g., Willoughby et al.
(2021)).

Cognitive ability. Cognitive ability was assessed at intake for both MTFS cohorts
using four subtests from the age-appropriate Wechsler Intelligence Scale. Twins in
the younger cohort were assessed with the Wechsler Intelligence Scale for Children-
Revised (WISC-R) and twins in the older cohort were assessed with the Wechsler
Adult Intelligence Scale-Revised (WAIS-R). The short forms consisted of two Per-
formance subtests (Block Design and Picture Arrangement) and two Verbal subtests
(Information and Vocabulary), and the scaled scores from these subtests were pro-
rated to determine overall IQ. IQ from this short form has been shown to correlate
(r = 0.94) with IQ from the complete test (Sattler (1974)).

Non-cognitive Skills: Personality measures. Six measures of non-cognitive skills de-
rived from the age-17 assessment of both cohorts were used. First, we used three
higher-order scales from the Multidimensional Personality Questionnaire (MPQ,
Tellegen and Waller (2008)). The MPQ has eleven primary trait scales (Absorp-
tion, Well-Being, Social Potency, Achievement, Social Closeness, Stress reaction,
Aggression, Alienation, Control, Harm Avoidance, Traditionalism). Each is as-
sessed with 18 self-report items. The three higher order MPQ scales (Positive
Emotionality of Affectivity (here PA, associated with Wellbeing, Social Potency,
Achievement, and Social Closeness), Negative Emotionality or Affectivity (NA, as-
sociated with Stress Reaction, Alienation, and Aggression) and Constraint (CN,
associated with Control, Harm Avoidance, and Traditionalism.)) are computed as
linear functions of the 11 primary scales. 38

High Constraint is associated with tendencies to inhibit and constrain impul-
sive as well as risk-taking behavior. Individuals with higher Negative Emotionality
scores are more prone to experience anxiety anger, and in general negative engage-
ment. Positive Emotionality is associated with search for rewarding behavior and

38For details, see https://www.upress.umn.edu/test-division/mpq/copy_of_mpq_

BF-overview.
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experience, while low PA may be associated with loss of interest, depressive en-
gagement and fatigue. In our sample the three higher order dimensions, as well as
IQ, are approximately normally distributed.

Additional Non-cognitive Skills. Three additional measures of soft skills were de-
rived from answers to questionnaires.

Externalizing was the total number of DSM-IV symptoms of oppositional defiant
disorder, conduct disorder, and adult antisocial behavior (i.e., the adult symptoms
used in diagnosing antisocial personality disorder) obtained by interviewing the
twin using with the Diagnostic Interview for Children and Adolescents (DICA-R)
(Reich (2000), Welner et al. (1987)) and Structured Clinical Interview for DSM-III-
R (SCID) Spitzer et al. (1992)). The interviews were modified to ensure complete
coverage of DSM-IV and symptoms were reported over the lifetime of the adolescent.
In the analysis reported here, the Externalizing scale was log-transformed (after
adding 1) to minimize positive skew.

The Academic Effort scale consisted of eight items answered by the twins’ mother
on a 4-point scale (Definitely False, Probably False, Probably True, Definitely
True). Items on this scale (with α = .91) 39 cover academic effort (e.g., “Turns
in homework on time”) and motivation (“Wants to earn good grades”).

Finally, the Academic Problems scale consisted of three items (α = .77) answered
on the same 4-point format by the mother and covering behavioral problems in a
school setting (e.g., “Easily distracted in class”).

Family Background. Three indicators of family background assessed at intake were
analyzed here. First, Parent Occupational Status was based on mothers’ and fa-
thers’ reports and coded using the Hollingshead scale (Hollingshead (1957)). We
inverted the 1-7 point Hollingshead scale, so that higher scores represented higher
occupational status. Individuals were coded as missing if they did not work full-
time, were disabled or institutionalized, or reported their occupation as homemaker.
The occupation status of the home was taken as the maximum of the two parent
reports. Parent College was the number of parents having completed a four-year
college degree.

39Cronbach’s alpha (Cronbach (1951)) is a good lower bound on the reliability when
the scale measures only one common factor
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Appendix A. Proofs and Additional Material

A.1. Preferences and Stable Matchings. We assume a preference order over
matchings; consistently with our assumption on matchings, the order is defined on
the observable vector zO of each of the two mates. It is also monotonic in the
Θ × Y component, and is homophilic in the C component. More precisely, recall
that Θ ≡ ×nl=1Θk, each component has a natural order (such as “taller”, “more
intelligent”, “lower Neuroticism score” and so on), and Y has the natural order over
the real numbers, so Θ and Θ × Y have an induced partial order. An individual
in the marriage market is a type zO ∈ Θ × Y × C. Preferences over mates of the
individual zO of sex s ∈ {m, f} (recall m is mother, assumed to be female) are
represented by a weak order �zsO that is monotonic:

(47) ∀z
′′

M , z
′

M : z
′′

M ≥ z
′

M implies ∀c ∈ C, (z
′′

M , c) �zOs (z
′

M , c)

and homophilic:

(48) ∀zM , c, e, f : d(f, c) ≤ d(e, c) implies ∀z
′

M (z
′

M , f) �(zM ,c)s (z
′

M , e).

The household maximization problem described in equation (6)-(10), which only
depends on the Θ × Y components, defines a preference over matches. In the
maximization problem an individual (θm, ym) evaluates the utility U(θm, ym, θf , yf )
from a match with an individual (θf , yf ) anticipating the household income and
the skill of the two children; so her preferences (if the preferences are completely
described by the household maximization problem) are represented by U(θm, ym, ·).
The same holds for the f potential spouse. We assume that household log income
yh is linear combination of the income of the two spouses with weights wyi adding to
1, and that the expected (by the parents) skill of each child θc is linear combination
of the skills of the parents with weight wθi , i ∈ {m, f} also adding to 1. In summary
we assume:

(49) yh = wymym + wyfyf ;

and

(50) θc = wθmθm + wθfθf ;

Substituting the optimal investment (11) into the budget constraint (7)), the
education (8) and income(9) equations we find that, up to a constant independent
of θ and y, the worth in the marriage market of a type (θ, y) of sex i ∈ {m, f} is:

(51) Wi(θ, y) ≡ (1− δ + 2δαIh)wyi y + 2δαθhw
θ
i θ

and the utility of a household is the sum of the worth of the spouses:

(52) U(θm, ym, θf , yf ) = Wm(θm, ym) +Wf (θf , yf )

so the household utility from the households maximization problem is linear and
monotonically increasing in the parents’ types and incomes, hence the overall utility
is (if we assume that any additional components are monotonically increasing )
monotonically increasing.



POLYGENIC ANALYSIS 37

A stable matching is defined as usual a matching that cannot be blocked by
individuals or pairs of mates.40 By the properties we have derived we conclude
using standard arguments:

Proposition A.1. A stable matching exists. There is complete segregation over C.
Parents’ genotypes (the random variables gm and gf ) are conditionally independent
for any vector of observable characteristics.

A.2. Proof of inequality 34. The inequality follows because when parents match
on income and only on income the system (28-30) is as follows. Equation 28 be-
comes:

(53) V(θ) =
σ2
εθ + η2

2 E(θm, θf )

1− η2

2

.

Equations (29) and (30) are unchanged. Rearranging one obtains the inequality 34.

A.3. Proof of lemma 4.1. We denote PGSi the polygenic score of twin i, and
PGSm, PGSf , as indicated by the subscript the score of mother and father re-
spectively. SImilar notation for g, the genotype of various individuals. The proof
uses the fact the the genotype of the child is (after meiotic recombination) the
sum of one haplotype of the mother and one of the father, each chosen with equal
probability. Recall we are considering an additive model, as stated in equation (2).
Given these premises, we have:

(54) E(PGSi|gm, gf ) =
PGSm + PGSf

2

We then have:

E(PGS1PGS2)
= E(E(PGS1PGS2)|gm, gf )
= E(E(PGS1|gm, gf )E(PGS2|gm, gf ))
= E(E( 1

2 (PGSm + PGSf )|gm, gf )E( 1
2 (PGSm + PGSf )|gm, gf ))

= 1
2E(E((PGSm)2 + PGSmPGSf )|gm, gf )

= 1
2 + 1

2E(PGSmPGSf )

where the first equality follows from elementary property of expectation, the
second from the conditional independence of PGS with respect to parents’ geno-
type, the third from additivity of PGS of each offspring (equation (54)), the fourth
from symmetry between PGSm and PGSf , and fifth again follows from elementary
properties of expectation.

40More precisely: A matching ν is stable, if and only if for all, except possibly a zero

measure set (with respect to the product measure ν ⊗ ν), pairs (zm, zf , z
′
m, z

′
f ),

zf �zm z
′
f or z

′
m �

z
′
f
zm or

(
zf �zm z

′
f & z

′
m �

z
′
f
zm

)
.
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A.4. Proof of Theorem 3.1. We recall the equations describing the process on
income and genetic profile, simplifying the notation for clarity in exposition.

We write the income equation in the compact form:

(55) yc = βC(ym, yf ) + w(gc) + σZ

where β < 1, σ > 0, Z is a standard normal, and C is a composition map giving a
household income as function of the income of the two parents. We assume that C
is continuous and satisfies:

(56) min{ym, yf} ≤ C(ym, yf ) ≤ max{ym, yf};C(y, y) = y.

We will call household income, and denote it yh, the value of this composition. This
form includes the special cases in which the household income is the average of the
two parents’ income, possibly with different weights.

The genotype of the child given the pair of parents’ genotypes (gm, gf ) is a
random variable with distribution, conditional on (gm, gf )

(57) H(·|gm, gf ) ∈ ∆(G).

We can now be more precise. We first assign to µ its disintegration according to
the partition W−1(V), that is the vector of pairs of probability of the class vi and
the conditional probability given vi:

(58) ((µV(vi), µ(·|vi)) : i ∈ Z) ,

By Rohlin’s theorem (Rohlin (1952)), such a disintegration exists and in addition
(i) µV is a probability measure on V, (ii) for every i, µ(·|vi)) a probability measure
on G× Y that satisfies µ(C(vi|vi)) = 1 and (iii) µ(·) =

∑
i∈Z µV(vi)µ(·|vi)).

We now describe the function giving the next period measure, examining each
component of this object separately. First there is a Markov kernel assigning to a
parents’ profile (gm, ym, gf , yf ) a probability on G × Y , interpreted as the child’s
genotype and household income, assigning to OG ×OY ∈ B(G)× B(Y )

(59) KF ((gm, ym, gf , yf ), OG ×OY ) = H(OG|gm, gf )δC(ym,yf )(OY )

Next is the Markov kernel assigning to a pair (gc, yh) of child’s genotype and house-
hold income a distribution on child’s income, as by equation (55), assigning to a
Borel subset of Y , OY :

(60) KI((gc, yh), OY ) ≡ Φ

(
1

σ
(OY − βyh − w(gc))

)
where Φ is the measure induced by the standard normal. We define the function
Ψ : ∆(G× Y )→ ∆(G× Y ) as:

(61) Ψ(ρ) ≡ (ρ⊗ ρ)KFKI

where ρ ⊗ ρ is the independent product of the two measures, and KFKI is the
composition of the two kernels.

Lemma A.2. The map Ψ is continuous in the weak topology.

Proof. The map ρ→ ρ⊗ρ is continuous (see Lemma 1.1, chapter 3 of Parthasarathy
(1967)). The rest follows from the continuity assumption on the combination func-
tion C and the fact that the topology on G is discrete, thus H is continuous. �



POLYGENIC ANALYSIS 39

The next period measure is defined by the function

T : ∆(G× Y,B(G× Y ))→ ∆(G× Y,B(G× Y )),

where for every set O ∈ B(G× Y )):

(62) (Tµ)(O) ≡
∑
i∈N

µV(vi)Ψ(µ(·|vi))(O)

As standard in economics, we will study the distribution on population character-
istics (genotype and income) considering the invariant distributions.

A.4.1. Invariant Measures. This section will illustrate a reason why the model with
a fully specified genetic transmission is different from the standard model.

The following invariance property is true for any function T ′ (including the
function T we defined earlier) on ∆(G × Y ) that has two basic properties. The
first is the mating property: the mating process operates though a mating function
M : (∆(G×Y ))2 → ∆((G×Y )2) that preserves marginals. In the case of T defined
in equation (62), the mating function is:

dM(µ, µ) =
∑
vi

µV (vi) (µ(·|vi)⊗ µ(·|vi))

The second is the factor property: the distribution of child’s genotype and income
factor through the H function in equation (57) and a kernel S : (G× Y )2 → ∆(Y )
denoted S(·; (gm, ym, gf , yf )) (in the case of T , this is the Markov kernel KFKI).

Lemma A.3. The set of measures with the same minor allele frequency is invariant
under any T ′ that satisfies the mating and the factor property.

Proof. Let for this proof C : G→ {0, 0.5, 1}K defined by C(g, k) ≡ g(k)/2, and the
push forward mapping µ ∈ ∆(G) to C∗µ; the expectation with respect to C∗µ at k
gives the frequency of the allele at locus k as

AF (k) =

∫
G

dµG(g)C(g, k)

Then, denoting X ≡ (G× Y )2, with generic element x ≡ (gm, ym, gf , yf ), the next
period allele frequency at k is:∫

G×Y

∫
X

dM(µ, µ)(x)H(gc; gm, gf )S(dyc;x)C(gc, k) =∫
G

∫
X

dM(µ, µ)(x)H(gc; gm, gf )

∫
Y

S(dyc;x)C(gc, k) =∫
G

∫
X

dM(µ, µ)(x)H(gc; gm, gf )C(gc, k) =∫
G

∫
G2

dM(µ, µ)G2(gm, gf )H(gc; gm, gf )C(gc, k) =∫
G

dµG(g)C(g, k)

where the first equality follows from Fubini’s theorem; for the second we have used
the obvious fact that for all x: ∫

Y

S(dyc;x) = 1;
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for the third we have defined for O ∈ B(G2)

M(µ, µ)G2(O) = M(µ, µ)(O × Y 2);

and the last follows from the basic properties of the function H. �

The following proposition examines a case which is uninteresting from a sub-
stantial point of view (because it excludes heterogeneity), but is very useful for il-
lustration of the differences between our model and the standard model of parental
skill transmission. Let us define the set of genotypes that are homozygotes at all
loci:

(63) Hom ≡ {g ∈ G : ∀k, g(k) ∈ {0, 2}},

a set of 2K elements. If the marginal of the initial measure is concentrated on a
single element in Hom, then all the iterates have the same property.

Proposition A.4. The map T has at least 2K fixed points.

Proof. Take the initial measure to be concentrated on a single genotype g ∈ Hom.
We consider for illustration the case in which the partition is fine. In the general
case the result follows as a corollary of our results below. With the fine partition
mating takes place among individuals with the same income and genotype. There
is no dynamics involving G, so there is a unique invariant measure, distributed as

N
(
w(g)
1−β ,

σ2

1−β2

)
. �

Note that the dynamic is entirely in the set ∆(Y ); restricted to this set, the
iterates of T are weakly asymptotically stable. Of course the initial condition is
not, in the interesting case, nconcentrated on an element in Hom.

A.4.2. Estimates of T . As we mentioned in the text, the specific difficulty in analysing
T derives from the fact that, due to the product of measures in the definition of Ψ,
T is not linear. Thus standard theorems on existence of invariant measures, such
as Krylov-Bogoliuvov which is based on averaging, are not available.

To address this difficulty we first endow G×Y with a partial order. We say that
g′ �G g if w(g′) ≥ w(g) and we define the partial order on G × Y , denoted �, as
the one induced by the �G and the natural order over the real numbers. The order
� allows us to define the set of increasing functions on G× Y as:

(64) I ≡ {f : G× Y → R, (g′, y′) � (g, y)⇒ f(g′, y′) ≥ f(g, y)}.

In turn we can now define the first order stochastic dominance order on probability
measures on G× Y as the stochastic order induced by the cone I.

We can now construct our estimates of the function T . In simple terms, the
idea is to construct a function that is defined by the same process on income and
genotype as T is, but gives the best possible income and the best possible genotype
to the child. This will give us a control from above, and a similar procedure will give
the control from below. Since the construction for the lower bound is completely
symmetric to that of the upper bound we will develop in detail only the first.

Our control from above will operate on the subset of measures that have support
on the best possible genotype, that we now define. We let g∗ and g∗ to be any choice
of g providing the maximum and minimum value, respectively, of the function w
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on the finite set G, arbitrarily selecting one of the optimal values if necessary; that
is:

∀g ∈ G : w(g∗) ≥ w(g) ≥ w(g∗)

We will refer to g∗ (g∗) as the selected best (worst) genotype. The first step is to
define the largest class to which an income can belong, for some genotype:

(65) V (y) ≡ max{vi : G× {y} ∩ C(vi) 6= ∅}

Conditions (15) and (16) insure that the function V is well defined, that is, that
the supremum is finite and it is achieved. Also note that by definitions (16) and
(17), V (y) = W (g∗, y); definition (65) is more convenient for future use. Next we
define the sup over the incomes in a class:

(66) Y (vi) ≡ sup{y : G× {y} ∩ C(vi) 6= ∅}.

Note that W (g∗, Y (vi)) = vi+1.

Lemma A.5. The function V is piecewise constant, increasing, and right-continuous.
The function y → Y (V (y)):

(1) is piecewise constant, increasing, and right-continuous;
(2) is such that, for all y ∈ Y such that V (y) = vi,

w(g∗)− w(g∗)

wy
≤ Y (V (y))− y ≤ vi+1 − vi + w(g∗)− w(g∗)

wy
≡ yQ.

Proof. Let B∗ : V → Y be defined by

B∗(vi) =
vi − w(g∗)

wy
.

Note that

({g∗} × Y ) ∩ C(vi) = {g∗} × [B∗(vi), B
∗(vi+1))

The function V is constant and equal to vi on the interval [B∗(vi), B
∗(vi+1)), hence

the statement concerning V follows. The function Y (V (·)) inherits the properties
of V , so is piecewise constant and right continuous. The function y → Y (V (y))
has on the interval [B∗(vi), B

∗(vi+1)) the minimum at B∗(vi+1) and the maximum
at B∗(vi), and the values in the statement follow from simple computations, with

the difference B∗(vi+1)−B∗(vi) providing the additional term vi+1−vi
wy

in the upper

estimate. �

We denote the subset of measures with full support on the selected best genotype:

(67) ∆∗(G× Y ) ≡ {ν ∈ ∆(G× Y ) : ν({g∗} × Y ) = 1}

Lemma A.6. For µ ∈ ∆(G× Y ) and ν ∈ ∆∗(G× Y ),

ν � µ if and only if νY � µY
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Proof. If ν � µ, then considering functions that are constant with respect to G
proves that νY � µY . If νY � µY , then for any h ∈ I,

(ν, h) =

∫
Y

dν(g∗, y)h(g∗, y)

≥
∫
Y

dµ(g, y)h(g∗, y)

≥
∫
Y

dµ(g, y)h(g, y))

= (µ, h)

where the first equality is the definition, the second is the hypothesis we made, the
third follows because h ∈ I, and the last is the definition. �

We now introduce the function on measures that will provide the upper bound
for T ; it is denoted Q and we provide first a description of its definition. Take any
y, and assign to both parents the income y+ yQ, so yh = y+ yQ, and genotype g∗.
Then apply the same transition from pair of parents’ genotype and income as we
do for T . The induced function on measures Q is linear.

Definition A.7. The Markov kernel SQ is defined as, for any OY ∈ B(Y ):

SQ(y,OY ) ≡ Φ

(
1

σ
(OY − β(y + yQ)− w(g∗))

)
The function Q from ∆∗(G× Y ) to itself is defined as

(68) (Qν)({g∗} ×OY ) =

∫
Y

dν({g∗}, y)SQ(y,OY )

Lemma A.5 implies that any household income obtained by a match in the
class V (y) is less than y + yQ; since any genotype gc obtained by that match has

w(gc) ≤ w(g∗) the next period income obtained by this process dominates in first
order stochastic dominance that induced by the process underlying T . Thus, for
every y and µ in the order interval:

SQ(y, ·) � STµ (y, ·)
where � is the order on operators (see chapter 5, second part of definition 5.2.1 in
Müller and Stoyan (2002); see also O’Brien (1975), Kamae et al. (1977)).

We also recall that the sequence of iterates Pn, n ∈ N of a Markov operator on
a metric space X is called weakly asymptotically stable if P has a unique invariant
distribution µ∗ and

∀µ ∈ ∆(X,B) : Pn converges weakly to µ∗.

Lemma A.8. The function Q has a unique fixed point, ν∞, given by:

(69) ν∞({g∗}, ·) ∼ N
(
βyQ + w(g∗)

1− β
,

σ2

1− β2

)
.

The sequence of its iterates is weakly asymptotically stable.

Proof. Take the moment generating function of the nth iterate of function defining
the next period income random variable:

y′ = β(y + yQ) + w(g∗) + σZ
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and consider the limit. �

To allow the comparison between T and Q we represent the action of T in a
form similar to equation (68) for Q. Since T is not linear, the Markov kernel

corresponding to SQ must depend on the current measure, and will be written
as STµ (y,OY ) as the probability of a Borel set OY at the point y and population
measure µ.

We first provide an informal description of the process underlying this special
Markov kernel. The income of the parent m is chosen (this will be chosen according
to the measure µY ). The genotype gm is then chosen according to a version of
the conditional measure µ(·|ym). The parent belongs to the class of worth vi =
W (gm, ym), and a mate is chosen randomly in that class, with probability µ(·|vi).
The parents’ profile (gm, ym, gf , yf ) gives the probability on child’s pair (gc, yc).

The precise definition is given next:

Definition A.9. For µ ∈ ∆(G× Y ), STµ : Y → ∆(Y,B(Y )) is defined as

STµ (y,OY ) ≡
∫
G2×(G×Y )

dµ(gm|y)
∑
vi

δvi(W (gm, y))dµ(gf , yf |vi)×

H(gc|gm, gf )Φ

(
1

σ
(OY − βC(ym, yf )− w(gc))

)

for any OY ∈ B(Y ).

The Y -marginal of Tµ is an average of STµ (y, ·):

Lemma A.10. For all µ ∈ ∆(G× Y ) and OY ∈ B(Y ):

(70) (Tµ)(G×OY ) =

∫
Y

dµY (y)STµ (y,OY )

Proof. We first observe that for any µ ∈ ∆(G× Y ),

∑
vi

µV (vi)(µ(·|vi)⊗ µ(·|vi))(gm, ym, gf , yf ) =(71)

µY (ym)dµ(gm|ym)
∑
vi

dµ(gf , yf |vi)δvi(W (gm, y))
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Take now any real valued bounded continuous function f on Y :

(Tµ, f) =∫
G×Y

d(Tµ)(g, y)f(yc) =∫
Y

f(yc)

∫
G

d(Tµ)(g, y) =∫
Y

f(yc)

∫
G

∫
(G×Y )2

∑
vi

µV (vi)(µ(·|vi)⊗ µ(·|vi))(gm, ym, gf , yf )

H(gc|gm, gf )Pr(yc|ym, yf , gc) =∫
Y

f(yc)

∫
(G×Y )2

∫
G

µY (ym)dµ(gm|ym)
∑
vi

dµ(gf , yf )|vi)δvi(W (gm, y))

H(gc|gm, gf )Pr(yc|ym, yf , gc) =∫
Y

dµY (y)

∫
Y

STµ (y, dyc)f(yc).

where in the fourth equality we have used the initial observation (71); the second
follows because f only depends on y, the third is the definition of T , and the last
is the definition of STµ (y, ·). �

We define the function Q, the set ∆∗(G× Y ), the kernel SQ, measure ν∞, in a

manner similar to Q, ∆∗(G× Y ), SQ, ν∞ respectively.
We can now define the order interval

(72) [ν∞, ν∞] ≡ {µ : ν∞ � µ � ν∞}

Lemma A.11. For every µ ∈ [ν∞, ν∞], Tµ ∈ [ν∞, ν∞].

Proof. For µ in the order interval,

Tµ � Qµ
� Qν∞

= ν∞

where the first relation follows from T � Q, the second from monotonicity of Q
(first part of definition 5.2.1 in Müller and Stoyan (2002)), and the last because ν∞

is a fixed point of Q. �

The order interval has a key property, proved in the next lemma:

Lemma A.12. The set [ν∞, ν∞] is weakly compact, convex.

Proof. Convexity is clear. We first prove that the set is relatively compact in the
weak topology. By Prohorov’s theorem (Parthasarathy (1967)), it suffices to show
that it is uniformly tight. Let ε > 0 be given: we claim that there exists a compact
set K ⊆ G × Y such that for any µ in the set, µ(K) ≥ 1 − ε. We will find a set
K = G × [−M,M ] for some M . For such a K, µ(K) = µY ([−M,M ]). By lemma
A.6 we derive that

ν∞Y � µY � ν∞Y .
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Find M large enough so that

max{ν∞Y (−∞,−M ], ν∞Y [M,+∞)} < ε

2
,

so that

µY ([−M,M ]c) < ε

as required.
Finally, the order interval is weakly closed (see for example, Proposition 3 of

Kamae et al. (1977)). �

Lemma A.13. The function T on [ν∞, ν∞] is continuous in the weak topology.

Proof. The measures in the set are uniformly absolutely continuous with respect to
the Lebesgue measure by the equation (55); note that the variance σ is independent
of the income. Recall now that a sequence µn converges weakly to µ if and only if

lim
n→∞

µn(A) = µ(A)

for any Borel set A whose topological boundary ∂A has µ measure zero. Now the
statement follows from the fact that for any i ∈ Z

∂C(vi) = ∪g{(g,
vi − w(g)

wy
), (g,

vi+1 − w(g)

wy
)}

which is a set of finite points in G× Y . �

A simple example shows that continuity may fail when the uniform absolute
continuity with respect to the Lebesgue measure fails.

Example A.14. Let K = 1, G ≡ {aa, aA,AA}, w(aa) = 0, w(aA) = 1, w(AA) =
2, wy = 1. Let v1 = 0, and V ≡ {v1}. Denote (G×Y )\C(v1) ≡ C(v0), and denote
the conditioning on the set C(v0) as conditioning on v0.

Consider the sequence in ∆(G× Y ):

(73) µn =
1

2

(
pnδ(aa, 1n ) + (1− pn)δ(AA,−2+ 1

n )

)
+

1

2

(
(1− pn)δ(aa,− 1

n ) + pnδ(AA,−2− 1
n )

)
with pn = 2

3 if n is even and 1
3 when odd. If we also let:

µ =
1

2
δ(aa,0) +

1

2
δ(AA,−2)

then µn converges weakly to µ.
We now consider the disintegration of the measures. For any n:

µnV (v1) ≡ µn(C(v1)) = µn(C(v0)) =
1

2
,

but

µ(C(v1)) = 1, µ(C(v0)) = 0

Also

µn(·|v1) = pnδ(aa, 1n ) + (1− pn)δ(AA,−2+ 1
n ).

and

µn(·|v0) = (1− pn)δ(aa,− 1
n ) + pnδ(AA,−2− 1

n )
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On the other hand, µ(·|v0) is undefined and:

µ(·|v1) =
1

2
δ(aa,0) +

1

2
δ(AA,−2)

Thus, the sequence of conditional expectations at a given worth oscillates with no
limit, and the limit of any subsequence (when it exists) is different from the condi-
tional value of the limit measure.

Also the function µ→ µV (vi) is not continuous.

We can now summarize the analysis developed so far, recalling the statement of
theorem (3.1):

Theorem A.15. Assume (22), and that the worth of an individual depends linearly
on income and skill. Then for any vector of allele frequencies:

(1) An invariant measure exists, with that allele frequency;
(2) Within each worth class, alleles at each locus are in Hardy-Weinberg equi-

librium;
(3) Within each worth class of the discrete partition, a higher income of both

parents implies a lower expected polygenic score of the child;
(4) The allele frequencies are invariant across periods.

Proof. The first part follows, given the previous analysis, from Himmelberg’s the-
orem (Himmelberg (1972)).

The second part follows applying Hardy-Weinberg’s theorem to the population
within the worth class, and using the fact that equilibrium is reached in one period.

For the third part of the theorem, consider in the discrete partition case two
families, indexed by i = 1, 2 with y2j > y1j , j ∈ {m, f}, so the genotype worth,

denoted wij , is such that: w2
j < w1

j , j ∈ {m, f}. The proof is very simple when the
function w is injective. For any pair (wm, wf )

E(w(gc)|wm), wf )

=
∑
k

β(k)E(gc(k)|wm, wf )

=
∑
k

β(k)E(gc(k)|gm, gf )

=
∑
k

β(k)E(gc(k)|gm(k), gf (k))

=
∑
k

β(k)
1

2
(gm(k) + gf (k))

=
1

2
(w(gm)) + w(gf ))

=
1

2
(wm + wf ) .

Injectivity is used in the second equality. The third equality uses the absence of
linkage disequilibrium among the SNP ’s in the polygenic score. In the general
case in which w−1(wj) is not a singleton, it suffices to take averages. Note the
probability on the finite set w−1(wm)× w−1(wf ) is uniform.

The last statement follows from lemma A.3. �



POLYGENIC ANALYSIS 47

A.5. Passive Gene × Environment Correlation. We focus on triples of a child,
mother and father, let gsl ∈ {0, 1, 2}K the genotype of l ∈ {c,m, f}, and with
s ∈ {t, nt}, let gsl ∈ {0, 1} the transmitted (s = t) and non-transmitted part of the
genotype of l. gl(k) and gsl (k) are the values at the kth locus. Note that

(74) gc = gtm + gtf , gf = gtf + gntf , gm = gtm + gntm .

We take αA the 3K-dimensional vector of true genic values of the genes as they
affect directly the phenotype of interest (here A refers to the additive part in the
standard ACE decomposition). αCl is the vector for the effect on the environment
provided to the child by the parent of type l.

Recalling the form of the family environment variable in equation (24), and using
equation (23), if we set Π = 0 to focus on the issue of interest, and take the value
αθ to be part of the genic values:

(75) hij = αAgc + ρyi + αCmgm + αCf gf + ζh,ij .

where we have denoted, to lighten notation:

ρ ≡ αI + αθπ, αθ; ζ
h,i
j ≡ εθ,ij + εh,ij .

Equation (75) clarifies the different ways in which passive gene-environment in-
teraction occurs. The first way is described by terms of the form αCl gl, which
express the direct effect of the parents on the child’s environment, through path-
ways that are possibly completely unrelated to the phenotype of interest (which is
human capital in our case).

The second way operates through the term ρyi, which contains implicitly terms
of the form αAl gl, relative to parents, grandparents and so on, that affected the
child’s household income. Differently from the first, this pathway involves genes
that are relevant for the phenotype of interest.

A.5.1. Fully Genetic decomposition of income. Recall that income is in our model a
linear function of human capital with coefficient αh. In the following we assume that
we have rescaled the index of human capital so that αh = 1. We can now express the
income of an individual as the discounted series of all past genetic contributions of
ancestors, plus a random, zero mean term. To denote in a simple way the ancestors
of an individual i we use the following notation. For any n ∈ {0, 1, 2, . . . }, a list of
possible ancestors of depth n is an elements s in the set {m, f}n. For instance, mi
is the mother of i, fmi is the father of the mother of i and so on. We adopt the
convention that at n = 0, the only element s in {m, f}n is the identity, so for such
s, si = i, smi = mi and so on. We denote with h(i) the family of individual i.

Lemma A.16. For every individual i:

(76)
yi =

∑∞
n=0

(
ρ
2

)n
(
∑
s∈{m,f}n

(
αAgsi + αCmgmsi + αCf gfsi

)
+

∑
s∈{m,f}n ζsi)

Proof. Using (75) and recalling that αh = 1, we get for every individual i:

(77) yi = ρyh(i) + αAgi + αCmgmi + αCf gfi + ζi

where

(78) yh(i) =
1

2
(ymi + yfi).
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Substituting equation (78) formulated for each ancestor repeatedly into (77) yields
equation (76). The series converges under our assumption that ρ < 1. �

A.5.2. Estimation. Lemma A.16 has some useful implications for our estimations.

GWAS coefficients. The estimated GWAS coefficients β(k)’s of the kth SNP
are obtained as a linear univariate regression of the hij values (or, given our nor-

malization αh = 1, of yij) on the gc(k) values. They are a biased estimate of the

αC values, for three reasons. The first reason is due to the term yi in equation
(75), because yi is obviously correlated with gc, since they are both affected by the
parents’ and other ancestors’ genotype. The second factor is the term introduced
by the environmental value F , given by the parents’ genotypes, again correlated
with gc. The third factor is the Linkage Disequilibrium (LD) correlation between
different loci.

We standardize the genotype variables to have mean zero and variance equal
to (for the g(k) variable) 1 and 1/2 (for the gs(k) variables), obtaining the new
variables Sg(k) and Sgs(k).

41 Using the formula in lemma A.16, if we ignore the LD correlation we find:

Lemma A.17. For every k:

(81) Eβ(k) = αA(k) +
1

2

(
αCm(k) + αCf (k)

)
+ ρC

where C is a constant.

The term multiplied by ρ takes into account the effect occurring through grand-
parents and previous generations. As we have seen, ρ is between 0.2 and 0.4, thus
terms with ρ or higher order are small. Eliminating the potential bias introduced
by the terms of the form αC is possible using information of the genotype of par-
ents, direct or imputed (see Kong et al. (2018), Young et al. (2022)). Complete
elimination of the bias would require information on the infinite sequence of an-
cestors, although the complete formula shows that the effects decays exponentially,
thus effects of generations beyond parents is small.

We emphasize that, even if αCm = αCf = 0, a passive rGE effect persists through
the influence on the environment of the children that genes influencing educational
attainment produce on family income and parents’ education. This effect may be
substantial, and in our data it is. This what we consider next.

Controlling for parental PGS. We consider first the case with no effect of
parents’ genotype on environment, that is:

41That is, we call p(k) the frequency of the allele with value 1, and define:

(79) Sg(k) ≡ g(k) − 2p(k)√
2p(k)(1 − p(k))

;Sgl(k) ≡ gl(k) − p(k)√
2p(k)(1 − p(k))

, for l = t, nt.

Of course at Hardy-Weinberg equilibrium:

ESg(k) = ESgl(k) = 0,VarSg(k) = 1,VarSgl(k) = 1/2, l = t, nt;

and

(80) Sg(k) = Sgt(k) + Sgnt(k).
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(82) αCm = αCf = 0

In this case, substituting equation (78) into (77) we obtain:

yi = αAgi +
ρ

2
αA(gmi + gfi) +

ρ2

2
(yh(mi) + yh(fi)) + ζi

The PGS of the child is an unbiased measure of the term αAgi, and so are the
parental scores for αAgsi, s ∈ {m, f}. Since ρ is relatively small, the larger part of
the effect on income is produced by terms measured by the PGS of the child) and
the PGS of the parents. This is the model we estimate in section S-0.4.

When assumption in equation (82) does not hold we have the bias described in
equation (81), and at the current state of knowledge one has to accept it. However,
the estimates presented in section S-0.4 suggests that adding the terms modeling
the environmental effect changes little of the results.

Appendix B. Data availability

The data and codes necessary to replicate the empirical results in the paper
Educational attainment and Intergenerational Mobility: a Polygenic Score Analysis,
by A. Rustichini, W. Iacono, M. McGue and J. Lee, Journal of Political Economy,
accepted 2022, are available at Harvard Dataverse, at the address

https://dataverse.harvard.edu/dataverse/JPE.
The folder includes the Stata code (Stata17) and data file (dta format) to repro-

duce the tables in the paper.
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S-0.1. Alternative Specifications of Parental Investment. In this section we
briefly outline the model in which investment of parents in human capital of children
can affect human capital directly, but also the skill variable (θ).

The ith household solves the optimization problem in the variables E expenditure
in consumption, Ii pair of investment in the human capital and J i of skill of the
two children:

(S-1) max
(Ei,Ji1,J

i
2,I

i
1,I

i
2)

E

(1− δ) lnEi + δ
∑
j=1,2

yij

 ,

subject to the budget constraint given by the household’s income (y denotes the
natural log of income):

(S-2) Ei +
∑
k=1,2

Iik +
∑
k=1,2

J ik = exp(yi)

The expectation of equation (6) refers to the random shocks εh and εy.
The skill of twin ij is affected by a parental pecuniary investment J ij , in addition

to the skill component in the genetic endowment, and is thus given by:

(S-3) θij = w(gij) + αJ ln J ij + ΠXi
j + εθ,ij .

The parameter αJ describes the effect of the parental investment on skill.
We assume the no-correlation and zero mean condition as in the main text.

Human capital accumulation is described by equation 8, and income is given by
equation 9, as in the main text. We assume zero mean for shocks to human capital
and income as in the main text, and also assume that the shocks to human capital
and income are not correlated.

At the optimal solution of the problem optimal parental investment is equal for
the two siblings for both the component of the skill investment and the human
capital investment, and is a constant fraction (depending on the parameters) of the
total household income exp(yi), as in equation 4 of the main text. This equation
can then be taken as the reduced form of the model presented in this section.
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S-0.2. MTAG correction of PGS. We considered a different polygenic score
using a correction that increases the predicitve power of the score. To do this, after
the preminary stage indicated, we applied the software tool MTAG Turley et al.
(2019) to increase the effective sample size of the education summary statistics
by drawing upon GWAS of IQ, a trait showing a strong genetic correlation with
educational attainment. In this MTAG step, we used the IQ summary statistics
of both Savage et al. (2018) and Lee et al. (2018). The weights of the SNP ’s
in the score were then calculated with the software tool PRScs Ge et al. (2019),
which uses an external sample to estimate the correlations between SNP ’s in order
to convert the univariate regressions coefficients in GWAS summary statistics to
partial regression coefficients. PRScs also applies Bayesian shrinkage to the partial
regression coefficients, which can then be used as weights in the polygenic score. We
used the 1000 Genomes European populations to estimate the correlations between
SNP ’s and calculated the shrunken partial regression coefficients of the 450,000
SNP ’s that were originally genotyped in MCTFR and survived all default software
filters.

The two different scores yield very similar results in our analysis, hence which
one we choose turns out to be of no substantial importance. We illustrate the
difference in table S-1 below, that one can compare to the table 1 in the main text.
The first column is identical, hence it is omitted. Similar comparisons are possible
for the other estimates in the main text, with similar results.

The small size of the difference is probably due to the fact that the sample size
of the underlying GWAS (Lee et al. (2018)) is large.
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Table S-1. Income at the age 29 take, family in-
come, PGS, and Personality. The PGS is MTAG-
corrected. All variables, including College of parents and
Male, are standardized to mean zero and SD 1. The signs
of MPQ variables NA, Externalizing and Academic prob-
lems are reversed. Controlled for PC’s and the parents-
child time difference in age at income data collection.

(1) (2)
b/se b/se

Family Income 0.127*** 0.079**
(0.027) (0.032)

Male 0.276*** 0.312***
(0.025) (0.029)

Male × Family Income –0.061** –0.050*
(0.025) (0.030)

PGS MTAG Corr 0.073*** 0.006
(0.025) (0.029)

Education Years 0.257***
(0.035)

IQ 0.011
(0.029)

MPQ PA 0.061**
(0.026)

MPQ NA –0.024
(0.027)

MPQ CN 0.034
(0.032)

Externalizing –0.072*
(0.037)

Academic effort 0.057
(0.038)

Academic problems –0.017
(0.034)

N 2100 1485
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S-0.3. Fixed Effects Analysis on DZ twins. In this section we report results
on fixed effects analysis on DZ twins, for Education Years, GPA, College and
Intelligence.

Table S-2. Education Years, only DZ twins. All variables are stan-
dardized to mean zero and SD 1. Fixed effects regressions.

(1) (2) (3)
b/se b/se b/se

PGS Education 0.115* 0.114* 0.090
(0.060) (0.060) (0.058)

MPQ PA 0.041 0.036
(0.047) (0.047)

MPQ NA 0.005 –0.028
(0.050) (0.049)

MPQ CN 0.071 –0.040
(0.051) (0.057)

Externalizing at 17 0.107
(0.081)

Academic effort at 17 0.176**
(0.076)

Academic problems at 17 0.029
(0.064)

Constant 0.244*** 0.273*** 0.189***
(0.027) (0.040) (0.054)

N 612 612 612
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Table S-3. GPA score: Fixed effects analysis in DZ twins. All
variables are standardized to mean zero and SD 1. Fixed effects regressions.

(1) (2) (3)
b/se b/se b/se

PGS 0.275*** 0.179*** 0.134***
(0.055) (0.053) (0.044)

IQ 0.333*** 0.186***
(0.054) (0.044)

MPQ PA 0.079* 0.063*
(0.042) (0.034)

MPQ NA –0.001 –0.055
(0.044) (0.036)

MPQ CN 0.209*** 0.002
(0.045) (0.042)

Externalizing at 17 0.106*
(0.061)

Academic effort at 17 0.471***
(0.057)

Academic problems at 17 0.102**
(0.047)

Constant –0.029 0.100*** –0.046
(0.027) (0.034) (0.041)

N 682 630 590
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Table S-4. College and PGS in DZ twins: logit analysis in DZ
twins, odds ratios reported. All variables standardized to mean zero
and SD 1.

(1) (2) (3)
b/se b/se b/se

PGS 2.851*** 2.191*** 1.904***
(0.397) (0.324) (0.318)

IQ 3.507*** 3.238***
(0.637) (0.670)

MPQ PA 1.291** 1.426**
(0.166) (0.216)

MPQ NA 1.345** 1.238
(0.176) (0.195)

MPQ CN 1.880*** 1.075
(0.270) (0.193)

Externalizing at 17 1.517*
(0.332)

Academic effort at 17 2.075***
(0.480)

Academic problems at 17 1.350
(0.258)

Constant 0.616*** 1.008 0.713
(0.086) (0.160) (0.153)

σ2
u 3.898*** 3.438*** 3.423***

(1.023) (1.119) (1.318)

N 865 780 645
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Table S-5. IQ score: Fixed effects analysis in DZ twins. All vari-
ables are standardized to mean zero and SD 1. Fixed effects regressions.

(1) (2) (3)
b/se b/se b/se

PGS 0.152*** 0.160*** 0.125**
(0.049) (0.054) (0.059)

MPQ PA 0.043 0.026
(0.043) (0.047)

MPQ NA 0.102** 0.108**
(0.042) (0.049)

MPQ CN –0.089** –0.161***
(0.044) (0.057)

Externalizing at 17 –0.151*
(0.082)

Academic effort at 17 0.261***
(0.075)

Academic problems at 17 0.097
(0.064)

Constant –0.069*** –0.058* –0.054
(0.024) (0.034) (0.056)

N 802 723 601
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S-0.4. Additional Evidence on Gene × Environment Correlation. We re-
port in this section regressions estimating the existence and effect size of gene ×
environment correlation. In each table the dependent variable of interested is re-
gressed on the PGS of parents, and additional controls are considered. Both DZ
and MZ twins are considered.

Table S-6. Education Years on PGS of Twin and PGS of par-
ents, IQ and Soft Skills. All variables, including Education Years, are
standardized to mean zero and SD 1.

(1) (2) (3) (4)
b/se b/se b/se b/se

PGS 0.082*** 0.097*** 0.057* 0.069**
(0.031) (0.030) (0.032) (0.031)

PGS mother 0.105*** 0.054** 0.064** 0.038
(0.027) (0.026) (0.027) (0.027)

PGS father 0.102*** 0.020 0.036 –0.009
(0.028) (0.028) (0.028) (0.028)

IQ 0.152*** 0.122***
(0.023) (0.023)

Soft Skills Index 0.222*** 0.212***
(0.022) (0.022)

Education of parents 0.186*** 0.116***
(0.025) (0.025)

Family Income 0.110*** 0.083***
(0.027) (0.028)

Male –0.091*** –0.081*** –0.039 –0.032
(0.024) (0.022) (0.025) (0.024)

Constant 0.291*** 0.265*** 0.317*** 0.296***
(0.023) (0.023) (0.023) (0.023)

N 1686 1686 1333 1333
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Table S-7. GPA on PGS of Twin and PGS of parents, IQ and Soft
Skills. All variables, including GPA, are standardized to mean zero and SD
1.

(1) (2) (3) (4)
b/se b/se b/se b/se

PGS 0.217*** 0.226*** 0.120*** 0.127***
(0.033) (0.033) (0.031) (0.031)

PGS mother 0.050 0.009 0.034 0.017
(0.033) (0.033) (0.029) (0.029)

PGS father 0.062* –0.001 0.003 –0.025
(0.034) (0.035) (0.030) (0.031)

IQ 0.242*** 0.226***
(0.022) (0.023)

Soft Skills Index 0.384*** 0.380***
(0.021) (0.021)

Education of parents 0.158*** 0.083***
(0.032) (0.028)

Family Income 0.078** 0.031
(0.036) (0.031)

Male –0.226*** –0.221*** –0.136*** –0.132***
(0.029) (0.029) (0.026) (0.026)

Constant 0.024 0.001 0.038 0.026
(0.029) (0.029) (0.025) (0.025)

N 1579 1579 1389 1389
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Table S-8. College on PGS of Twin and PGS of parents, IQ and
Soft Skills. Logit, Odds ratios displayed. All independent variables
are standardized to mean zero and SD 1. lnsig2u = panel level variance.

(1) (2) (3) (4)
b/se b/se b/se b/se

PGS 1.817*** 1.977*** 1.616*** 1.743***
(0.276) (0.291) (0.285) (0.303)

PGS mother 1.535*** 1.158 1.306* 1.088
(0.205) (0.147) (0.201) (0.164)

PGS father 1.580*** 1.051 1.138 0.873
(0.221) (0.142) (0.181) (0.139)

IQ 2.620*** 2.193***
(0.380) (0.309)

Soft Skills Index 3.499*** 3.326***
(0.521) (0.485)

Education of parents 2.607*** 2.173***
(0.333) (0.323)

Family Income 1.612*** 1.429**
(0.216) (0.229)

Male 0.648*** 0.678*** 0.838 0.867
(0.075) (0.073) (0.116) (0.116)

Constant 0.859 0.779** 0.996 0.905
(0.098) (0.085) (0.130) (0.116)

lnsig2u 6.407*** 5.125*** 6.314*** 5.578***
(1.076) (0.903) (1.322) (1.212)

N 1805 1805 1411 1411
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Table S-9. IQ on PGS of Twin and PGS of parents, IQ and Soft
Skills. All variables are standardized to mean zero and SD 1.

(1) (2) (3) (4) (5)
b/se b/se b/se b/se b/se

PGS 0.193*** 0.186*** 0.179*** 0.209*** 0.183***
(0.033) (0.037) (0.037) (0.032) (0.036)

PGS mother 0.050 0.037 0.033 –0.008 –0.005
(0.032) (0.036) (0.036) (0.032) (0.035)

PGS father 0.092*** 0.089** 0.083** 0.003 0.011
(0.033) (0.037) (0.037) (0.034) (0.037)

Soft Skills Index 0.087*** 0.111***
(0.025) (0.025)

Education of parents 0.254*** 0.231***
(0.031) (0.033)

Family Income 0.026 0.017
(0.033) (0.037)

zmale 0.193***
(0.031)

Constant –0.012 –0.006 –0.008 –0.031 –0.021
(0.029) (0.032) (0.032) (0.028) (0.031)

N 1805 1411 1411 1805 1411
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S-0.5. Evidence of Genetic Assortative Mating. Table S-10 shows the size of
the genetic assortative mating, and that it is robust to control for possible popula-
tion stratification, as the comparison between model (1), (2) and (3) confirms.

Table S-10. PGS of parents. Dependent variable: PGS of the mother.
Model (3) controls for the square of each PC (not reported).

(1) (2) (3)
b/se b/se b/se

PGS of father 0.156*** 0.133*** 0.131***
(0.033) (0.034) (0.034)

pc1 8.022*** 5.024*
(2.569) (2.963)

pc2 –6.184** –8.653***
(2.657) (2.885)

pc3 –2.094 –2.113
(2.689) (4.485)

pc4 –5.371** –3.787
(2.596) (2.693)

pc5 1.239 2.545
(2.687) (2.721)

pc6 –1.634 –1.672
(2.844) (2.859)

pc7 4.146 3.311
(2.779) (2.793)

pc8 –4.025 –4.418
(2.765) (2.773)

pc9 –0.183 –0.496
(2.866) (2.867)

pc10 5.819** 5.826**
(2.790) (2.810)

N 951 918 918



50 A RUSTICHINI, W IACONO, J LEE, AND M MCGUE

References

Abdellaoui, A., K. J. H. Verweij, and B. P. Zietsch (2014): “No ev-
idence for genetic assortative mating beyond that due to population strat-
ification,” Proceedings of the National Academy of Sciences, 111, E4137–
E4137.

Aiyagari, S. R., J. Greenwood, and N. Guner (2000): “On the State
of the Union,” Journal of Political Economy, 108, 213–244.

Barcellos, S. H., L. S. Carvalho, and P. Turley (2018): “Education
can reduce health differences related to genetic risk of obesity,” Proceed-
ings of the National Academy of Sciences, 115, E9765–E9772.

Barth, D., N. W. Papageorge, and K. Thom (2020): “Genetic endow-
ments and wealth inequality,” Journal of Political Economy, 128, 1474–
1522.

Becker, G. and N. Tomes (1979): “An Equilibrium Theory of the Dis-
tribution of Income and Intergenerational Mobility,” Journal of Political
Economy, 87, 1153–89.

——— (1986): “Human Capital and the Rise and Fall of Families,” Journal
of Labor Economics, 43, S–1–39.

Becker, G. S. (1973): “A theory of marriage: part I,” Child Development
Perspectives, 81, 813–846.

——— (1989): “On the Economics of the Family: Reply to a Skeptic,” The
American Economic Review, 79, 514–518.

Becker, J., C. A. Burik, G. Goldman, N. Wang, H. Jayashankar,
M. Bennett, D. W. Belsky, R. Karlsson Linnér, R. Ahlskog,
A. Kleinman, et al. (2021): “Resource profile and user guide of the
Polygenic Index Repository,” Nature human behaviour, 5, 1744–1758.

Belsky, D. W., B. W. Domingue, R. Wedow, L. Arseneault, J. D.
Boardman, A. Caspi, D. Conley, J. M. Fletcher, J. Freese,
P. Herd, T. E. Moffitt, R. Poulton, K. Sicinski, J. Wertz, and
K. M. Harris (2018): “Genetic analysis of social-class mobility in five
longitudinal studies,” Proceedings of the National Academy of Sciences,
115, E7275–E7284.

Björklund, A. and M. Jäntti (1997): “Intergenerational Income Mobil-
ity in Sweden Compared to the United States,” The American Economic
Review, 87, 1009–1018.

Björklund, A., J. Roine, and D. Waldenström (2012): “Intergener-
ational top income mobility in Sweden: Capitalist dynasties in the land
of equal opportunity?” Journal of Public Economics, 96, 474 – 484.

Black, S. E. and P. J. Devereux (2011): “Chapter 16 - Recent Devel-
opments in Intergenerational Mobility,” in Handbook of Labor Economics,
ed. by D. Card and O. Ashenfelter, Elsevier, vol. 4, Part B, 1487 – 1541.

Black, S. E., P. J. Devereux, P. Lundborg, and K. Majlesi (2017):
“On the Origins of Risk-Taking in Financial Markets,” The Journal of
Finance, 72, 2229–2278.



POLYGENIC ANALYSIS 51

Blanden, J. (2011): “CrossCountry Rankings in Intergenerational Mobil-
ity: A Comparison of Approaches from Economics and Sociology,” Jour-
nal of Economic Surveys, 27.

Bollen, K. A. (1989): Structural Equations with Latent Variables, New
York u. a.: Wiley.

Cesarini, D. and P. M. Visscher (2017): “Genetics and educational
attainment,” npj Science of Learning, 2, 1–7.

Chiang, C., A. J. Scott, J. R. Davis, E. K. Tsang, X. Li, Y. Kim,
T. Hadzic, F. N. Damani, L. Ganel, S. B. Montgomery, et al.
(2017): “The impact of structural variation on human gene expression,”
Nature genetics, 49, 692–699.

Cronbach, L. (1951): “Coefficient alpha and the internal structure of
tests,” Psychometrika, 16, 297–334.

Crow, J. F. and M. Kimura (1970): An introduction to Population Ge-
netics Theory, Harper and Row.

Ding, W., S. F. Lehrer, J. N. Rosenquist, and J. Audrain-
McGovern (2009): “The impact of poor health on academic perfor-
mance: New evidence using genetic markers,” Journal of health econom-
ics, 28, 578597.

Disney, E. R., I. J. Elkins, M. McGue, and W. G. Iacono (1999):
“Effects of ADHD, conduct disorder, and gender on substance use and
abuse in adolescence,” American Journal of Psychiatry, 156, 1515–1521.

Domingue, B. W., J. Fletcher, D. Conley, and J. D. Boardman
(2014): “Genetic and educational assortative mating among US adults,”
Proceedings of the National Academy of Sciences, 111, 7996–8000.

Dudbridge, F. (2013): “Power and Predictive Accuracy of Polygenic Risk
Scores,” PLoS Genet, 9, 1–17.

Fernandez, R., N. G. Guner, and J. Knowles (2005): “Love And
Money: A Theoretical And Empirical Analysis Of Household Sorting And
Inequality,” The Quarterly Journal of Economics, 120, 273–344.

Fernandez, R. and R. Rogerson (2001): “Sorting and Long-Run In-
equality,” The Quarterly Journal of Economics, 116, 1305–1341.

Fletcher, J. and S. Lehrer (2011): “Genetic lotteries within families,”
Journal of Health Economics, 30, 647–659.

Galton, F. (1886): “Regression Towards Mediocrity in Hereditary
Stature,” Anthropological Miscellanea, 246–263.

Ge, T., C.-Y. Chen, Y. Ni, Y.-C. A. Feng, and J. W. Smoller (2019):
“Polygenic prediction via Bayesian regression and continuous shrinkage
priors,” Nature Communications, 10, 1–10.

Goldberger, A. S. (1989): “Economic and Mechanical Models of Inter-
generational Transmission,” The American Economic Review, 79, 504–
513.

Greenwood, J., N. Guner, and J. A. Knowles (2003): “More on Mar-
riage, Fertility, and the Distribution of Income,” International Economic
Review, 44, 827–862.



52 A RUSTICHINI, W IACONO, J LEE, AND M MCGUE

Greenwood, J., N. Guner, G. Kocharkov, and C. Santos (2016):
“Technology and the Changing Family: A Unified Model of Marriage,
Divorce, Educational Attainment, and Married Female Labor-Force Par-
ticipation,” American Economic Journal: Macroeconomics, 8, 1–41.

Heckman, J., R. Pinto, and P. Savelyev (2013): “Understanding
the Mechanisms through Which an Influential Early Childhood Program
Boosted Adult Outcomes,” American Economic Review, 103, 2052–86.

Heckman, J. J. and T. Kautz (2012): “Hard evidence on soft skills,”
Labour Economics, 19, 451 – 464.

Himmelberg, C. (1972): “Fixed points of compact multifunctions,” Jour-
nal of Mathematical Analysis and Applications, 38, 205 – 207.

Hollingshead, A. (1957): Two Factor Index of Social Position, Holling-
shead.

Iacono, William ND Carlson, S. R., J. Taylor, I. J. Elkins,
and M. McGue (1999): “Behavioral disinhibition and the development
of substance use disorders: Findings from the Minnesota Twin Family
Study.” Development and Psychopathology., 11, 869–900.

Jaffee, S. and T. Price (2007): “Geneenvironment correlations: a re-
view of the evidence and implications for prevention of mental illness,”
Molecular Psychiatry, 12, 432–442.

Johnson, W., M. M. McGue, and W. G. Iacono (2004): “Genetic
and environmental influences on academic achievement trajectories during
adolescence,” Developmental Psychology, 42.

Kamae, T., U. Krengel, and G. L. O’Brien (1977): “Stochastic In-
equalities on Partially Ordered Spaces,” Ann. Probab., 5, 899–912.

Knopik, V. S., J. M. Neiderhiser, J. C. DeFries, and R. Plomin
(2017): Behavioral genetics, Worth Publishers, Macmillan Learning New
York.

Kong, A., G. Thorleifsson, M. L. Frigge, B. J. Vilhjalmsson,
A. I. Young, T. E. Thorgeirsson, S. Benonisdottir, A. Oddsson,
B. V. Halldorsson, G. Masson, D. F. Gudbjartsson, A. Helga-
son, G. Bjornsdottir, U. Thorsteinsdottir, and K. Stefansson
(2018): “The nature of nurture: Effects of parental genotypes,” Science,
359, 424–428.

Lagakos, D., B. Moll, T. Porzio, N. Qian, and T. Schoellman
(2018): “Life Cycle Wage Growth across Countries,” Journal of Political
Economy, 126, 797–849.

Lee, C.-I. and G. Solon (2009): “Trends in Intergenerational Income
Mobility,” The Review of Economics and Statistics, 91, 766–772.

Lee, J. J. et al. (2018): “Gene discovery and polygenic prediction from
a genome-wide association study of educational attainment in 1.1 million
individuals,” Nature Genetics.

Loury, G. (1981): “Intergenerational Transfers and the Distribution of
Earnings,” Econometrica, 49, 843–67.



POLYGENIC ANALYSIS 53

Mazumder, B. (2005): “Fortunate Sons: New Estimates of Intergenera-
tional Mobility in the United States Using Social Security Earnings Data,”
The Review of Economics and Statistics, 87, 235–255.

McGue, M., D. Irons, and W. Iacono (2014): “The adolescent origins
of substance use disorders: A behavioral genetic perspective.” in Genes
and the motivation to use substances, ed. by S. F. Stoltenberg, New York:
Springer.

McGue, M., A. Rustichini, and W. G. Iacono (2017): “Cognitive,
noncognitive, and family background contributions to college attainment:
A behavioral genetic perspective,” Journal of Personality, 85, 65–78.

McGue, M., E. A. Willoughby, A. Rustichini, W. Johnson, W. G.
Iacono, and J. J. Lee (2020): “The contribution of cognitive and
noncognitive skills to intergenerational social mobility,” Psychological Sci-
ence, 31, 835–847.

Mincer, J. A. (1974): Schooling, Experience, and Earnings, no. minc74-1
in NBER Books, National Bureau of Economic Research, Inc.

Müller, A. and D. Stoyan (2002): Comparison Methods for Stochastic
Models and Risks, Wiley.

Mulligan, C. B. (1997): Parental Priorities and Economic Inequality,
University of Chicago Press.

——— (1999): “Galton versus the Human Capital Approach to Inheri-
tance,” Journal of Political Economy, 107, S184–S224.

Nagylaki, T. (1992): Introduction to Theoretical Population Genetics,
Springer Verlag.

O’Brien, G. L. (1975): “The Comparison Method for Stochastic Pro-
cesses,” Ann. Probab., 3, 80–88.

Okbay, A., Y. Wu, N. Wang, H. Jayashankar, M. Bennett, S. M.
Nehzati, J. Sidorenko, H. Kweon, G. Goldman, T. Gjorgjieva,
Y. Jiang, B. Hicks, C. Tian, D. A. Hinds, R. Ahlskog, P. K. E.
Magnusson, S. Oskarsson, C. Hayward, A. Campbell, D. J. Por-
teous, J. Freese, P. Herd, 23andMe Research Team, Social
Science Genetic Association Consortium, C. Watson, J. Jala,
D. Conley, P. D. Koellinger, M. Johannesson, D. Laibson,
M. N. Meyer, J. J. Lee, A. Kong, L. Yengo, D. Cesarini, P. Tur-
ley, P. M. Visscher, J. P. Beauchamp, D. J. Benjamin, and A. I.
Young (2022): “Polygenic prediction of educational attainment within
and between families from genome-wide association analyses in 3 million
individuals,” Nature Genetics, 54, 437–449.

Okbay, A. et al. (2016): “Genome-wide association study identifies 74
loci associated with educational attainment,” Nature.
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